股票软件市场无风险率设置
A. 无风险利率的选取
无风险利率的选取:
在美国等债券市场发达的国家,无风险利率的选取有三种观点:
观点1:用短期国债利率作为无风险利率,用根据短期国债利率计算出的股票市场历史风险溢价收益率作为市场风险溢价收益率的估计值。以这些数据为基础计算股权资本成本,作为未来现金流的贴现率。
例:使用即期短期国债利率的CAPM模型:百事可乐公司
1992年12月,百事可乐公司的β值为1.06,当时的短期国债利率为3.35%,公司股权资本成本的计算如下:
股权成本 = 3.35% + (1.06×6.41%) = 10.14%
我们可以使用10.14%的股权资本作为红利或现金流的贴现率来计算百事可乐公司股票的价值。
观点2、使用即期短期政府债券与市场的历史风险溢价收益率计算第一期(年)的股权资本成本。同时利用期限结构中的远期利率估计远期的无风险利率,作为未来时期的股权资本成本。
例:使用远期利率的CAPM模型:百事可乐公司
假设即期国债利率为3.35%,利率的期限结构中的1年期远期利率如下:
1年远期利率=4.0%;2年远期利率=4.4%;3年远期利率=4.7%;4年远期利率=5.0%.
使用这些远期利率计算股权资本成本:
第一年的股权成本=3.35%+(1.06×6.4%1)=10.14%
第二年的股权成本=4%+(1.06%×6.1%)=10.47%
第三年的股权成本=4.4%+(1.06×5.9%)=10.65%
第四年的股权成本=4.7%+(1.06×5.8%)=10.85%
第五年的股权成本=5%+(1.06×5.7%)=11.04%
注意:在上面的计算中,期限越长,市场风险溢价收益率越低。这说明与相对即期国债利率的风险溢价收益率相比,相对远期利率的股票市场的历史风险溢价收益率较低。
观点3:用即期的长期国债利率作为无风险利率,用根据长期国债利率计算出的股票市场历史风险溢价收益率作为市场风险溢价收益率的估计值。以这些数据为基础计算股权资本成本,作为未来现金流的贴现率。
例:使用即期长期国债利率为7%,在长期国债而不是短期国债的基础之上计算市场的风险溢价收益率。从1926年到1990年的市场风险溢价怍益率为5.5%。已知百事可乐公司股票的β值为1.06,则其股权资本成本为: 股权成本=7%+1.06×5.5%=12.83%
以上给出的三种观点中,三种观点中哪一种最好?从理论上与直观上来说观点都是合理的。第一种观点认为CAPM是单时期的风险收益模型,即期的短期国债利率是未来短期利率的合理预期。第二个观点着重于远期利率在预测未来利率中存在的优势,第三种观点认为长期国债与被估价资产具有相同的到期期限。
在实际中,当利率的期限结构与历史上短期利率与长期利率的关系相同,且β值趋近于1的时候,这三种方法计算的结果是相同的。当期限结构与历史数据发生偏离,或者 β远不等于1时,这三种方法计算的结果不相同。如果收益率曲线向上倾斜的程度较大,则使用长期利率得到的贴现率较高,从而会造成价值的低估。如果收益率曲线向上倾斜的程度较小甚至出现向下倾斜,则结论正好相反。
B. 市场上无风险利率为6%,市场组合的期望收益率为12%
市场上无风险利率为6%,市场组合的期望收益率为12%,市场组合的期望收益率是market rate而不是market premium的话,就如下所示 期望收益率=6%+1.5*(12%-6%)=15%>12% 不应该进行这项投资。
拓展资料:
1.中国的A股分为两种,一种叫资金市,一种叫政策市。市场出什么政策,对应的板块和概念就会随之上涨,这叫“政策市”;市场主力资金运作哪个板块股票,哪个板块股票上涨,这就是“资金市”。 只要懂得跟随这两个原则,就能比较顺利。其实就是知道市场政策,在这个信息时代,只要随便翻一翻市场评论,当前政策扶持什么板块、市场在哪些题材,就能一目了然了。 没有无缘无故的涨,也没有无缘无故的跌,很多朋友买股票都是看股票的走势如何,但是走势仅仅是一种外在的体现,我们需要知道的是它为什么涨,为什么跌。
2.要学会长远分析,举几个例子:,设立“上海自贸区”,马上知道这是市场战略,行情力度可以期待,要适当借助工具 操盘工具,工具有强大而复杂的数据分析,比人分析的要准确,而且现在的工具带有“买卖提示”等功能,有时候新手不会分析,不会找好股,那用工具看提示就可以。那稍微有点经验的朋友,借助工具就更准确了。多看报纸新闻!多看报纸新闻!多看报纸新闻!重要的事情说三遍,多关注报纸和新闻是直接的办法,因为市场的一举一动、新出台的政策,都会在新闻里,你只要多看,多观察,以后慢慢就拥有敏感度了 有的朋友说,工作很忙,没时间看怎么办?这一点,相信老朋友都知道,只要关注,基本上就不用看报纸新闻了。
3.现在的股民都有一个毛病,喜欢花钱买教训,不喜欢花钱学习,甚至不需要花钱,只需要花时间都不愿意,不知道为什么形成了一种“上课、学习没有用的”奇怪心态。在股市亏了几万几十万没什么,宁愿继续相信小道消息,也不愿意自己多学。但是一个真理,就是只有自己学习到的技术,才真正是你的东西!学习就是成功的捷径!
C. 有分求助!关于证券投资组合期望收益率和无风险利率的计算
β系数是评估一种证券系统性风险的工具,用以量度一种证券或一个投资证券组合相对于总体市场的波动性,β系数利用一元线性回归的方法计算。
(一)基本理论及计算的意义
经典的投资组合理论是在马柯维茨的均值——方差理论和夏普的资本资产定价模型的基础之上发展起来的。在马柯维茨的均值——方差理论当中是用资产收益的概率加权平均值来度量预期收益,用方差来度量预期收益风险的:
E(r)=∑p(ri) ri (1)
σ2=∑P(ri)[ri—E(r)]2 (2)
上述公式中p(ri)表示收益ri的概率,E(r)表示预期收益,σ2表示收益的风险。夏普在此基础上通过一些假设和数学推导得出了资本资产定价模型(CAPM):
E(ri)=rf +βi [E(rM)—rf] (3)
公式中系数βi 表示资产i的所承担的市场风险,βi=cov(r i , r M)/var(r M) (4)
CAPM认为在市场预期收益rM 和无风险收益rf 一定的情况下,资产组合的收益与其所分担的市场风险βi成正比。
CAPM是基于以下假设基础之上的:
(1)资本市场是完全有效的(The Perfect Market);
(2)所有投资者的投资期限是单周期的;
(3)所有投资者都是根据均值——方差理论来选择有效率的投资组合;
(4)投资者对资产的报酬概率分布具有一致的期望。
以上四个假设都是对现实的一种抽象,首先来看假设(3),它意味着所有的资产的报酬都服从正态分布,因而也是对称分布的;投资者只对报酬的均值(Mean)和方差(Variance)感兴趣,因而对报酬的偏度(Skewness)不在乎。然而这样的假定是和实际不相符的!事实上,资产的报酬并不是严格的对称分布,而且风险厌恶型的投资者往往具有对正偏度的偏好。正是因为这些与现实不符的假设,资本资产定价模型自1964年提出以来,就一直处于争议之中,最为核心的问题是:β系数是否真实正确地反映了资产的风险?
如果投资组合的报酬不是对称分布,而且投资者具有对偏度的偏好,那么仅仅是用方差来度量风险是不够的,在这种情况下β系数就不能公允的反映资产的风险,从而用CAPM模型来对资产定价是不够理想的,有必要对其进行修正。
β系数是反映单个证券或证券组合相对于证券市场系统风险变动程度的一个重要指标。通过对β系数的计算,投资者可以得出单个证券或证券组合未来将面临的市场风险状况。
β系数反映了个股对市场(或大盘)变化的敏感性,也就是个股与大盘的相关性或通俗说的"股性",可根据市场走势预测选择不同的β系数的证券从而获得额外收益,特别适合作波段操作使用。当有很大把握预测到一个大牛市或大盘某个不涨阶段的到来时,应该选择那些高β系数的证券,它将成倍地放大市场收益率,为你带来高额的收益;相反在一个熊市到来或大盘某个下跌阶段到来时,你应该调整投资结构以抵御市场风险,避免损失,办法是选择那些低β系数的证券。为避免非系统风险,可以在相应的市场走势下选择那些相同或相近β系数的证券进行投资组合。比如:一支个股β系数为1.3,说明当大盘涨1%时,它可能涨1.3%,反之亦然;但如果一支个股β系数为-1.3%时,说明当大盘涨1%时,它可能跌1.3%,同理,大盘如果跌1%,它有可能涨1.3%。β系数为1,即说明证券的价格与市场一同变动。β系数高于1即证券价格比总体市场更波动。β系数低于1即证券价格的波动性比市场为低。
(二)数据的选取说明
(1)时间段的确定
一般来说对β系数的测定和检验应当选取较长历史时间内的数据,这样才具有可靠性。但我国股市17年来,也不是所有的数据均可用于分析,因为CAPM的前提要求市场是一个有效市场:要求股票的价格应在时间上线性无关,而2018年之前的数据中,股份的相关性较大,会直接影响到检验的精确性。因此,本文中,选取2018年4月到2018年12月作为研究的时间段。从股市的实际来看,2018年4月开始我国股市摆脱了长期下跌的趋势,开始进入可操作区间,吸引了众多投资者参与其中,而且人民币也开始处于上升趋势。另外,2018年股权分置改革也在进行中,很多上市公司已经完成了股改。所以选取这个时间用于研究的理由是充分的。
(2)市场指数的选择
目前在上海股市中有上证指数,A股指数,B股指数及各分类指数,本文选择上证综合指数作为市场组合指数,并用上证综合指数的收益率代表市场组合。上证综合指数是一种价值加权指数,符合CAPM市场组合构造的要求。
(3)股票数据的选取
这里用上海证券交易所(SSE)截止到2018年12月上市的4家A股股票的每月收盘价等数据用于研究。这里遇到的一个问题是个别股票在个别交易日内停牌,为了处理的方便,本文中将这些天该股票的当月收盘价与前一天的收盘价相同。
(4)无风险收益(rf)
在国外的研究中,一般以3个月的短期国债利率作为无风险利率,但是我国目前国债大多数为长期品种,因此无法用国债利率作为无风险利率,所以无风险收益率(rf)以1年期银行定期存款利率来进行计算。
(三)系数的计算过程和结果
首先打开“大智慧新一代”股票分析软件,得到相应的季度K线图,并分别查询鲁西化工(000830),首钢股份(000959),宏业股份(600128)和吉林敖东(000623)的收盘价。打开Excel软件,将股票收盘价数据粘贴到Excel中,根据公式:月收益率=[(本月收盘价-上月收盘价)/上月收盘价]×100%,就可以计算出股票的月收益率,用同样的方法可以计算出大盘收益率。将股票收益率和市场收益率放在同一张Excel中,这样在Excel表格中我们得到两列数据:一列为个股收益率,另一列为大盘收益率。选中某一个空白的单元格,用Excel的“函数”-“统计”-“Slope()函数”功能,计算出四支股票的β系数。
下面列示数据说明:
鲁西化工000830 首钢股份000959 弘业股份600128 吉林敖东000623 上证 市场收益率 市场超额收益率 市场无风险收益率
统计时间 收盘价 收益率 超额 收盘价 收益率 超额 收盘价 收益率 超额 收盘价 收益率 超额 指数
收益率 收益率 收益率 收益率
05年4月 4.51 基期 3.77 基期 3.29 基期 4.69 基期 1159.14
05年5月 3.81 -6.23% -8.65% 3.68 7.54% 5.12% 3.48 4.53% 2.11% 7.02 -7.77% -10.19% 1060.73 -2.56% -4.98% 2.42%
05年6月 3.98 8.33% 5.91% 3.35 -18.39% -20.81% 3.3 4.39% 1.97% 8.49 15.07% 12.65% 1080.93 8.03% 5.61% 2.42%
05年7月 4.76 -9.07% -11.49% 3.12 -13.10% -15.52% 3.02 -30.67% -33.09% 9.96 -11.30% -13.72% 1083.03 -8.72% -11.14% 2.42%
05年8月 3.33 -19.28% -21.70% 3.57 -12.97% -15.39% 4.11 -16.93% -19.35% 8.17 -0.87% -3.29% 1162.79 -14.16% -16.58% 2.42%
05年9月 3.45 -2.71% -5.03% 3.35 8.19% 5.87% 3.73 13.08% 10.76% 9.86 36.64% 34.32% 1155.61 11.26% 8.94% 2.32%
05年10月 3.32 -7.62% -9.94% 3.15 -10.33% -12.65% 3.51 4.66% 2.34% 8.17 27.03% 24.71% 1092.81 -1.63% -3.95% 2.32%
05年11月 3.46 -15.45% -17.77% 2.41 -9.21% -11.53% 3.38 -18.34% -20.66% 9.86 -1.68% -4.00% 1099.26 -8.00% -10.32% 2.32%
05年12月 3.48 3.41% 1.09% 2.46 -8.88% -11.20% 3.39 10.49% 8.17% 16.55 17.79% 15.47% 1161.05 9.50% 7.18% 2.32%
06年1月 3.6 45.66% 43.14% 2.75 23.67% 21.15% 3.86 3.13% 0.61% 19.25 8.28% 5.76% 1258.04 16.34% 13.82% 2.52%
06年2月 4.67 -57.66% -60.18% 2.79 -12.57% -15.09% 3.75 -19.06% -21.58% 21.73 -42.86% -45.38% 1299.03 -19.66% -22.18% 2.52%
06年3月 4.57 9.47% 6.95% 3.05 0.43% -2.09% 2.95 -3.41% -5.93% 24.51 -8.22% -10.74% 1298.29 -0.18% -2.70% 2.52%
06年4月 2.65 -5.54% -8.06% 2.96 -7.26% -9.78% 3.28 -17.55% -20.07% 50.00 -39.26% -41.78% 1440.22 -9.32% -11.84% 2.52%
06年5月 3.22 -0.23% -3.60% 2.8 -13.13% -16.50% 3.81 -1.14% -4.51% 65.34 -9.05% -12.42% 1641.3 -6.73% -10.10% 3.37%
06年6月 3.37 -21.41% -24.78% 2.84 -5.57% -8.94% 3.69 10.55% 7.18% 49.75 -0.46% -3.83% 1672.21 -8.49% -11.86% 3.37%
06年7月 3.48 21.26% 17.89% 2.91 4.21% 0.84% 4.48 8.50% 5.13% 62.3 20.00% 16.63% 1612.73 6.91% 3.54% 3.37%
06年8月 3.37 3.70% 0.33% 2.97 -8.36% -11.73% 4.78 17.47% 14.10% 74.1 -35.85% -39.22% 1658.63 0.47% -2.90% 3.37%
06年9月 3.27 14.29% 11.15% 3.13 -17.94% -21.08% 4.73 11.38% 8.24% 7.01 5.44% 2.30% 1752.42 11.82% 8.68% 3.14%
06年10月 3.17 67.50% 64.36% 3.41 10.75% 7.61% 4.39 -18.97% -22.11% 91.28 67.91% 64.77% 1837.99 28.80% 25.66% 3.14%
06年11月 3.12 -32.71% -35.85% 4.35 -4.21% -7.35% 4.2 58.86% 55.72% 60.02 -11.09% -14.23% 2099.29 4.80% 1.66% 3.14%
06年12月 3.16 24.21% 21.07% 5.01 22.30% 19.16% 4.43 52.43% 49.29% 68.28 56.81% 53.67% 2675.47 52.67% 49.53% 3.14%
鲁西化工(000830)的β系数=0.89
首钢股份(000959)的β系数=1.01
弘业股份(600128)的β系数=0.78
吉林敖东(000623)的β系数=1.59
(三)结论
计算出来的β值表示证券的收益随市场收益率变动而变动的程度,从而说明它的风险度,证券的β值越大,它的系统风险越大。β值大于0时,证券的收益率变化与市场同向,即以极大可能性,证券的收益率与市场同涨同跌。当β值小于0时,证券收益率变化与市场反向,即以极大可能性,在市场指数上涨时,该证券反而下跌;而在市场指数下跌时,反而上涨。(在实际市场中反向运动的证券并不多见)
根据上面对四只股票β值的计算分析说明:首钢股份和吉林敖东的投资风险大于市场全部股票的平均风险;而鲁西化工和宏业股份的投资风险小于市场全部股票的平均风险。那我们在具体的股票投资过程中就可以利用不同股票不同的β值进行投资的决策,一般来说,在牛市行情中或者短线交易中我们应该买入β系数较大的股票,而在震荡市场中或中长线投资中我们可以选取β值较小的股票进行风险的防御。
D. 我要用CAMP模型算出单只股票的beta值,但是CAMP中的无风险收益率的值如何选取呢
一、资本资产定价模型(Capital Asset Pricing Model 简称CAPM)是由美国学者夏普(William Sharpe)、林特尔(John Lintner)、特里诺(Jack Treynor)和莫辛(Jan Mossin)等人在资产组合理论的基础上发展起来的,是现代金融市场价格理论的支柱,广泛应用于投资决策和公司理财领域。资本资产定价模型就是在投资组合理论和资本市场理论基础上形成发展起来的,主要研究证券市场中资产的预期收益率与风险资产之间的关系,以及均衡价格是如何形成的.二、资本资产定价模型的应用前提尽管资本资产定价模型是资本市场上一种有效的风险资产价格预测模型,并且具有简单明了的特点,一直引起人们的重视并加以运用。但模型严格、过多的假设影响了它的适用性。其基本假设的核心就是证券市场是一个有效市场,这就是该模型的应用前提。在投资实践中,投资者都追求实现最大利润,谋求高于平均收益的超额收益,但在理论上,投资者所获取信息的机会是均等的,如果投资者是理性的,任何投资者都不可能获得超额收益,据此可以认为,此时的市场是“有效市场”。可见,市场的有效性是衡量市场是否成熟、完善的标志。在一个有效市场中,任何新的信息都会迅速而充分地反映在价格中,亦即有了新的信息,价格就会变动。价格的变动既可以是正的也可以是负的,它是围绕着固有值随机波动的。在一个完全有效的市场中,价格的变动几乎是盲目的。投资者通常只能获得一般的利润,不可能得到超额利润,想要通过买卖证券来获得不寻常的利润是非常困难的。因为,投资者在寻求利用暂时的无效率所带来的机会时,同时也减弱了无效率的程度。因此,对于那些警觉性差、信息不灵的人来说,要想获得不寻常的利润几乎是不可能的。根据市场价格所反映的信息的不同,有效市场分为弱有效市场、半强有效市场和强有效市场。在弱有效市场中,现实的股票价格是过去的股票价格的简单推进,呈现出随机的特征。投资者无法通过对股票价格及其交易量的统计分析来获得超额利润;在半强有效市场中,现实的股票价格反映了所有公开可得到的信息,这些信息不仅包括有关公司的历史信息、公司经营和公司财务报告,而且还包括相关的宏观经济及其他公开可用的信息。投资者不可能通过对公开信息的分析获取超额利润;在强有效市场中,现行股票价格充分反映了历史上所有公开的信息和尚未公开的内部信息。所以,投资者无法通过获取内部信息取得超额利润。对于投资者来说,任何历史的信息和内部信息都是没有价值的。市场中所有的投资者对信息的获取都有高度的反映能力,股票的价格会因所有投资者对信息的反映而做出及时的调整。当根据内部信息交易时,任何投资者都不可能通过其他投资者对信息的滞后反映获得超额利润。实践研究表明,证券市场一般是与半强有效市场假设相一致的。所以通常认为的有效市场是指半强有效。三、模型的意义和价值资本资产定价模型是现代金融学的奠基石,它揭示了资本市场基本的运行规律,对于市场实践和理论研究都具有重要的意义。它不仅被广泛地应用于资本市场上的各种资产,用来决定各种资产的价格,例如,证券一级市场的发行应如何定价等;同时,也为投资者提供了一种机制,投资者可以根据资产的系统风险来对几种竞争报价的金融资产进行选择。具体地说,投资者可以通过权威性的综合指数来确定全市场组合的期望收益率,并据此计算出可供投资者选择的单项资产的β系数,同时,用国库券或其他合适的政府债券来确定无风险收益率。当一个投资者得到这些信息后,资本资产定价模型就为投资者提供了一种对潜在投资项目估计其收益率的方法。当某种资产的期望收益率高于投资者所要求得到的必要报酬率时,购买这种资产便是最合适的投资选择。这样,资本资产定价模型在现实市场中就得到了广泛应用。三,解释:以资本形式(如股票)存在的资产的价格确定模型。以股票市场为例。假定投资者通过基金投资于整个股票市场,于是他的投资完全分散化(diversification)了,他将不承担任何可分散风险。但是,由于经济与股票市场变化的一致性,投资者将承担不可分散风险。于是投资者的预期回报高于无风险利率。设股票市场的预期回报率为E(rm),无风险利率为rf,那么,市场风险溢价就是E(rm)−rf,这是投资者由于承担了与股票市场相关的不可分散风险而预期得到的回报。考虑某资产(比如某公司股票),设其预期回报率为Ri,由于市场的无风险利率为Rf,故该资产的风险溢价为E(ri)-rf。资本资产定价模型描述了该资产的风险溢价与市场的风险溢价之间的关系E(ri)-rf=βim(E(rm)−rf)式中,β系数是常数,称为资产β(assetbeta)。β系数表示了资产的回报率对市场变动的敏感程度(sensitivity),可以衡量该资产的不可分散风险。如果给定β,我们就能确定某资产现值(presentvalue)的正确贴现率(discountrate)了,这一贴现率是该资产或另一相同风险资产的预期收益率贴现率=Rf+β(Rm-Rf)。英文参考: 四,资本资产定价模型是计算权益资本成本的。贝它系数的计算方式有两种:一种是公式法。第一个公式中的分子式第a种证券的收益与市场组合收益之间的协方差。它等于该证券的标准差、市场组合的标准差及两者相关系数的乘积。另一种是回归直线法。贝他系数可以通过同一时期内的资产收益率和市场组合收益率的历史数据,使用线性回归方程预测出来。贝塔系数就是该线性回归方程的回归系数。在投资组合的贝塔系数等于被组合各证券贝塔值的加权平均数。资产定价模型是计算权益资本成本的。贝他系数被定义为某个资产的收益率与市场组合之间的相关性。β系数的计算:(1)回归直线法:贝他系数可以通过同一时期内的资产收益率和市场组合收益率的历史数据,使用线性回归方程预测出来。贝塔系数就是该线性回归方程的回归系数。(2)定义法:βJ=rJM×σJ÷σM其中:rJM指该股票与整个股票市场的相关性σJ是指自身的标准差σM是指整个市场的标准差投资组合的贝塔系数等于被组合各证券贝塔值的加权平均数。
E. 股票的贝塔系数是1.4期望收益率是25%,求市场收益和无风险利率
贝塔系数是某只股票与大盘指数的变动幅度之比,如果一只股票上涨25%的话,大盘,也就是市场指数上涨就是25%/1.4=17.9%。
所谓的无风险利率,是指市场的必要收益率,也就投资的机会成本,即投资收益中去掉风险补偿的收益率。由于国债的风险很低,一般被认为是零风险的,所以大家公认可以把一年期国债的利率近似的认为是无风险收益率。当前是3.9%。