r神經網路股票交易
① 如果用神經網路學習股票買賣,能做出一個完美的賺錢程序嗎
想在股市裡面賺錢都需要多方結合參考。當然不排除一招制敵的東西
② 基於遺傳演算法的神經網路預測股票的價格有現實意義嗎 知乎
有一定參考價值
但你不能以此為實際購買股票的唯一依據,不然會賠的很慘
不要只依賴演算法結果…
望採納
③ 在找能做人工智慧股票軟體的人
不知道你想怎麼做,做到什麼程度,如果只是簡單按照交易策略自動交易,那就容易多了有點編程基礎利用現在的很多第三方平台就可以實現.
但如果你想神經網路讓ai自己學習,那這事可大了,先不說這能不能成功,就硬體投入和人員的投入就不是一個小數字.
我學股票的最終目標就是奔著人工智慧方向努力的.就現在而言也只是利用計算機幫助分析效率提高,做一些策略回測分析優化,或者自動交易這些.還達不到人工智慧讓機器自己學習.
④ 用人工神經網路進行股票預測,數據樣本為開盤,收盤,最高,最低,成交量,成交額。用weka或matlab實現
把樣本數據分為訓練樣本和測試樣本,然後用訓練樣本訓練網路,用測試樣本進行模型驗證
⑤ 基於神經網路的股票預測
還要含代碼?
你的 t 讓門夾了吧?
⑥ RSI選股策略詳解
(1)RSI金叉:股票的多頭力量開始強於空頭力量,股價將大幅揚升,這是RSI指標指示的中線買入信號。(2)突破均線,放量:當股票同時帶量向上突破中長期均線時出現的買入信號比較准確,投資者可逢低買入。
⑦ 神經網路怎樣用在外匯交易中
用神經網路演算法去預測匯率
望採納
⑧ 你好看你發帖問過用BP神經網路預測股票價格的提問
首先你要搞清bp的基本原理,基於梯度法的原則,因為這種演算法按梯度走,極易進入局部最小點二出不來,所以對於比較簡單的模型如高斯曲面有一定的逼近能力,但是現實如你所說的股票,相關因素特別多,也就是說神經網路輸入通道會很多,而且通道和通道直接喲相關性,模型在超曲面上就像是大海海面一樣跌宕起伏,使用bp明顯太過於困難,而且實際中樣本有限的很,bp理論基於樣本無限的學習規則(21實際70年代),你要證明的話,可以例舉一個簡單的單極二次型函數,用來試試看bp能否完全逼近這個函數
⑨ 神經網路 能對股票 預測嗎
因為他么有未來函數,但是有未來函數的又是會隨著行情的演變而變的,所以沒有預測的軟體,只有預測的人,盤感很重要,不要迷信軟體,那樣不是會看軟體的人就能賺錢了。關注資金動向是你首先應該學習的。