金融模型有哪些
Ⅰ 互聯網金融風控模型都有哪些
以P2P網貸為例
一、銷售環節
了解客戶申請意願和申請信息的真實性,適用於信貸員模式,風控關鍵點。
風控關鍵點:不同類型的借款申請調用不同的信用評分規則引擎。
二、貸後存量客戶管理環節
存量客戶授信調整是存量客戶管理中的重要一環
風控關鍵點:
1、違約情況觀察,比如是否發生早期逾期,連續多期不還欠款、聯系方式失效等
2、信息關聯排查,比如存量客戶中是否有與新增的黑名單、灰名單數據匹配
三、貸後逾期客戶管理環節
還款意願差和還款能力不足是客戶逾期的主要原因,這個環節主要涉及逾期客戶管理與失聯客戶管理
風控關鍵點:
1、催收模型、策略優化。
2、失聯客戶識別與修復失聯客戶信息。
四、資金流動性管理環節
流動性風險是P2P網貸平台的主要風險,跑路P2P網貸平台的一個重要原因就是發生了擠兌。大數據下的流動性管理其實是實時BI的一個應用。傳統BI數據T+1,大數據是實時BI。
風控關鍵點:
1、資金維度
2、業務維度
Ⅱ 金融經濟學中的數學模型包括哪些詳解!
金融數學的核心是金融衍生物的定價理論,無論從經濟學還是數學都涉及較深的內容;期權定價模型:Black�Seholes�Merton理論---這是所有金融數學理論的核心 金融數學,又稱數理金融學等,是利用數學工具研究金融現象,通過數學模型進行定量分析,以求找到金融活動中潛在的規律,並用以指導實踐。金融數學是現代數學與計算機技術在金融領域中的結合應用。目前,金融數學發展很快,是目前十分活躍的前言學科之一。金融數學的發展曾兩次引發了「華爾街革命」。上個世紀50年代初期,馬克維茨提出證券投資組合理論,第一次明確地用數學工具給出了在一定風險水平下按不同比例投資多種證券,收益可能最大的投資方法,引發了第一次「華爾街革命」。 馬克維茨也因此獲得了1990年諾貝爾經濟...
Ⅲ 金融風險管理中風險模型有哪些內容
一、波動性方法
二、VaR模型(Value at Risk)
三、靈敏度分析法
四、一致性風險度量模型(Coherentmeasure of risk)
Ⅳ 行為金融模型有哪些
行為金融學有五大經典模型:DSSW模型、BSV模型、DHS模型、HS模型、BHS模型,具體為:
DSSW模型:Delong,Shleifer,Summers和Waldmann(1990)提出雜訊交易的基本模型,簡稱DSSW模型,他們認為,當理性套利者進行套利時,不僅要面對基礎性變動的風險還要面對「雜訊交易者」非理性預期變動的風險。該模型證明了非理性交易者不僅能夠在理性交易者的博弈中生存下來,而且,由於雜訊交易者製造了更大的市場風險,他們還將有可能獲得比理性投資者更高的風險溢價。
BSV模型:Barberis,Shleifer和Vishny(1998)提出,他們假定投資者決策時存在兩種偏差,其一是代表性偏差,其二是保守性偏差。代表性偏差會造成投資者對信息的反應過度,保守性偏差會造成投資者對新信息的反應不充分,導致反應不足。
DHS模型:Daniel.Hirshleifer和Suhramanyam(1998)提出,他們把投資者劃分為有信息的投資者和無信息的投資者,而有信息的投資者存在兩種偏差,一是過度自信,二是自我歸因偏差。投資者通常過高的估計了自身的預測能力,低估了自己的預測誤差;過分相信私人信息,低估公開信息的價值。
HS模型:Hong 和Stein(1999)年提出。該模型假定市場由兩種有限理性投資者組成:「信息挖掘者」和「慣性交易者」。兩種有限理性投資者都只能「處理」所有公開信息中的一個子集。信息挖掘者基於他們私自觀測到的關於未來基本情況的信息來做出預測,他們的局限性是不能根據當前和過去價格的信息進行預測。慣性交易者正好相反,他們可以根據價格變化做出預測,但是他們的預測是過去價格的簡單函數。HS模型將中期的反應不足和長期的價格反應過度統一起來,一次又稱為統一理論模型。
BHS模型:Barberis Nicholas,Ming Huang,and Tano Santos(2001) 提出,該模型是基於均值市場的假設而建立。和前面的三個模型不同,BHS模型沒有將有偏的預期引入到模型中,而是從資產定價的另一方面,即投資者的風險態度的角度來考慮問題。在傳統的基於消費的定價模型中,作者引入前景理論所揭示的「損失厭惡」現象和另一個關於偏好的「私房錢效應」,產生了一個隨前期收益狀況而變化的風險厭惡,價格升高後投資者風險厭惡程度降低,價格將被進一步推高。價格降低後投資者風險厭惡程度升高,價格將進一步打壓。這個模型可以解釋市場方面的三個偏差現象:過度波動現象,股權溢價之謎,收益可預測性。
泡沫模型:泡沫根植於股票市場的虛擬性和不完全性。在這種市場上,價格的高低在很多程度上取決於交易雙方對於未來價格的預期。而且這種預期具有「自我維持」或「自我實現」的特點。當股票價格越是上漲,越有更多地人相信股價會繼續上漲,即使人們知道股價已背離其內在價值。在過高價位上一旦市價止升回跌,很快會出現下行的正反饋激盪,導致泡沫徹底破裂。現有泡沫模型大致分為理性泡沫模型和行為金融泡沫模型兩大類。
Ⅳ FRM干貨:常用的金融風險的模型有哪些
金融市場的一項主要功能實際上是允許經濟界的不同參與者交易其風險,而近二十年來,由於受經濟全球化和金融一體化、現代金融理論及信息技術、金融創新等因素的影響,全球金融市場迅猛發展,金融市場呈現出前所未有的波動性,金融機構面臨著日趨嚴重的金融風險。
近年來頻繁發生的金融危機造成的嚴重後果充分說明了這一點。
一、波動性方法
自從1952年Markowitz提出了基於方差為風險的*3資產組合選擇理論後,方差(均方差)就成了一種極具影響力的經典的金融風險度量。方差計算簡便,易於使用,而且已經有了相當成熟的理論。當然,波動性方法也存在以下缺點:
(1)把收益高於均值部分的偏差也計入風險,這可能大家很難接受;
(2)以收益均值作為回報基準,也與事實不符;
(3)只考慮平均偏差,不適合用來描述小概率事件發生所導致的巨大損失,而金融市場中的「稀少事件」產生的極端風險才是金融風險的真正所在。
二、VaR模型(Value at Risk)
風險價值模型產生於1994年,比較正規的定義是:在正常市場條件下和一定的置信水平a上,測算出在給定的時間段內預期發生的最壞情況的損失大小X。在數學上的嚴格定義如下:設X是描述證券組合損失的隨機變數,F(x)是其概率分布函數,置信水平為a,則:VaR(a)=-inf{x|F(x)≥a}。該模型在證券組合損失X符合正態分布,組合中的證券數量不發生變化時,可以比較有效的控制組合的風險。
因此,2001年的巴塞耳委員會指定VaR模型作為銀行標準的風險度量工具。但是VaR模型只關心超過VaR值的頻率,而不關心超過VaR值的損失分布情況,且在處理損失符合非正態分布(如厚尾現象)及投資組合發生改變時表現不穩定。
三、靈敏度分析法
靈敏度方法是對風險的線性度量,它測定市場因子的變化與證券組合價值變化的關系。對於市場因子的特定變化量,通過這關系種變化關系可得到證券組合價值的變化量。針對不同的金融產品有不同的靈敏度。比如:在固定收入市場的久期,在股票市場的「β」,在衍生工具市場「δ」等。靈敏度方法由於其簡單直觀而得到廣泛的應用但是它有如下的缺陷:
(1)只有在市場因子變化很小時,這種近似關系才與現實相符,是一種局部性測量方法;
(2)對產品類型的高度依賴性;
(3)不穩定性。如股票的「貝塔」系數存在不穩定的缺陷,用其衡量風險,有很大的爭議;
(4)相對性。敏感度只是相對的比例概念,並沒有回答損失到底有多大。
四、一致性風險度量模型(Coherentmeasure of risk)
Artzner et al.(1997)提出了一致性風險度量模型,認為一個完美的風險度量模型必須滿足下面的約束條件:
(1)單調性;
(2)次可加性;
(3)正齊次性;
(4)平移不變性。
次可加性條件保證了組合的風險小於等於構成組合的每個部分風險的和,這一條件與我們進行分散性投資可以降低非系統風險相一致,是一個風險度量模型應具有的重要的屬性,在實際中如銀行的資本金確定和*3化組合確定中也具有重要的意義。目前一致性風險度量模型有:
(1)CVaR模型(Condition Value at Risk):條件風險價值(CVaR)模型是指在正常市場條件下和一定的置信水平a上,測算出在給定的時間段內損失超過VaRa的條件期望值。CVaR模型在一定程度上克服了VaR模型的缺點不僅考慮了超過VaR值的頻率,而且考慮了超過VaR值損失的條件期望,有效的改善了VaR模型在處理損失分布的後尾現象時存在的問題。當證券組合損失的密度函數是連續函數時,CVaR模型是一個一致性風險度量模型,具有次可加性,但當證券組合損失的密度函數不是連續函數時,CVaR模型不再是一致性風險度量模型,即CVaR模型不是廣義的一致性風險度量模型,需要進行一定的改進。
(2)ES模型(Expected Shortfall):ES模型是在CVaR基礎上的改進版,它是一致性風險度量模型。如果損失X的密度函數是連續的,則ES模型的結果與CVaR模型的結果相同;如果損失X的密度函數是不連續的,則兩個模型計算出來的結果有一定差異。
(3)DRM模型(Distortion Risk-Measure):DRM通過一個測度變換得到一類新的風險度量指標。DRM模型包含了諸如VaR、CVaR等風險度量指標,它是一類更廣義的風險度量指標。
(4)譜風險測度:2002年,Acerbi對ES進行了推廣,提出了譜風險測度(Spectral Risk Measure)的概念,並證明了它是一致性風險度量。但是該測度實際計算的難度很大,維數過高時,即使轉化成線性規劃問題,計算也相當困難。
五、信息熵方法
由不確定性把信息熵與風險聯系在一起引起了眾多學者的研究興趣,例如Maasoumi,Ebrahim,Massoumi and Racine,Reesor.R等分別從熵的不同角度考慮了風險的度量,熵是關於概率的一個單調函數,非負,計算量相對較少,熵越大風險越大。
六、未來的發展趨勢
近年來行為金融學逐漸興起,它將心理學的研究成果引入到標准金融理論的研究,彌補了標准金融理論中存在的一些缺陷,將投資心理納入到證券投資風險度量,提出了兩者基於行為金融的認知風險度量方法,並討論了認知風險與傳統度量方差的關系。2004年Murali Rao給出一種新的不確定性度量--累積剩餘熵。累積剩餘熵是用分布函數替換了Shannon熵的概率分布律或密度函數,它具有一些良好的數學性質,這個定義推廣了Shannon熵的概念讓離散隨機變數和連續隨機變數的熵合二為一,也許會將風險度量的研究推向一個新的台階。
總之,金融風險的度量對資產投資組合、資產業績評價、風險控制等方面有著十分重要的意義。針對不同的風險源、風險管理目標,產生了不同的風險度量方法,它們各有利弊,反映了風險的不同特徵和不同側面。在風險管理的實踐中,只有綜合不同的風險度量方法,從各個不同的角度去度量風險,才能更好地識別和控制風險,這也是未來風險度量的發展趨勢。
Ⅵ 在經濟學或金融學中有哪些重要的數學模型
IS—LM模型:IS—LM模型是反映產品市場和貨幣市場同時均衡條件下,國民收入和利率關系的模型。按照希克斯的觀點,流動偏好(L)和貨幣數量(M)決定著貨幣市場的均衡,而人們持有的貨幣數量既決定於利率(i),又決定於收入(y)的水平。總需求—總供給模型:總需求—總供給模型(AD--AS模型)是指將總需求與總供給結合在一起放在一個坐標圖上,用以解釋國民收入和價格水平的決定,考察價格變化的原因以及社會經濟如何實現總需求與總供給的均衡。
Ⅶ 互聯網金融風控要搞清7個問題:常用的模型有哪些
風險識別、風險估測、風險評價、風險控制和風險管理效果評價等環節。
目前最常用的風控模型是哪些?
風控模型 常用於擔保公司測算最高能夠承受的風險並且根據市場與資本建立最有效的風控模型進行風險手段
風控模型 是在良好的建立風控體系風控評定方式評分機制等基礎上進行有效的數據分析及評分體系就是建立常用的風控模型方式
Ⅷ 量化投資入門需要掌握的基礎金融量化模型有哪些
由於國內金融市場尚不完備,一些衍生品交易受到限制,所以相較國外市場,能用到的數學/統計學知識也要少一些。對於非理工背景的投資者,需要補充基礎的高等數學,線性代數,概率論,統計學,最優化理論等等學科的知識,這些內容可以在高校教科書中找到。對於一些新興的利用機器學習的交易策略,還需要了解一些數據挖掘的知識。但既然是入門,這部分自然不是必要的。
感受資產累積的愉悅,體驗深謀遠慮的滿足。游俠股市,智慧與謀略的虛擬股市,讓您的智慧不再寂寞。
Ⅸ FRM考試中的常見金融風險模型有哪些
一、波動性方法
自從1952年Markowitz 提出了基於方差為風險的資產組合選擇理論後,方差(均方差)就成了一種極具影響力的經典的金融風險度量。方差計算簡便,易於使用,而且已經有了相當成熟的理論。當然,波動性方法也存在以下缺點:
(1)把收益高於均值部分的偏差也計入風險,這可能大家很難接受;
(2)以收益均值作為回報基準,也與事實不符;
(3)只考慮平均偏差,不適合用來描述小概率事件發生所導致的巨大損失,而金融市場中的「稀少事件」產生的極端風險才是金融風險的真正所在。
二、VaR模型(Value at Risk)
風險價值模型產生於1994年,比較正規的定義是:在正常市場條件下和一定的置信水平a上,測算出在給定的時間段內預期發生的壞情況的損失大小X。在數學上的嚴格定義如下:設X是描述證券組合損失的隨機變數,F(x)是其概率分布函數,置信水平為a,則:VaR(a)=-inf{x|F(x)≥a}。該模型在證券組合損失X符合正態分布,組合中的證券數量不發生變化時,可以比較有效的控制組合的風險。因此,2001年的巴塞耳委員會指定VaR模型作為銀行標準的風險度量工具。但是VaR模型只關心超過VaR值的頻率,而不關心超過VaR值的損失分布情況,且在處理損失符合非正態分布(如厚尾現象)及投資組合發生改變時表現不穩定。不想重考,想一次通過,我有秘訣!!!
三、靈敏度分析法
靈敏度方法是對風險的線性度量,它測定市場因子的變化與證券組合價值變化的關系。對於市場因子的特定變化量,通過這關系種變化關系可得到證券組合價值的變化量。針對不同的金融產品有不同的靈敏度。比如:在固定收入市場的久期,在股票市場的「β」,在衍生工具市場「δ」等。靈敏度方法由於其簡單直觀而得到廣泛的應用但是它有如下的缺陷:
(1)只有在市場因子變化很小時,這種近似關系才與現實相符,是一種局部性測量方法;
(2)對產品類型的高度依賴性;
(3)不穩定性。如股票的「貝塔」系數存在不穩定的缺陷,用其衡量風險,有很大的爭議;
(4)相對性。敏感度只是相對的比例概念,並沒有回答損失到底有多大。
四、一致性風險度量模型(Coherentmeasure of risk)
Artzner et al.(1997)提出了一致性風險度量模型,認為一個完美的風險度量模型必須滿足下面的約束條件:
(1)單調性;
(2)次可加性;
(3)正齊次性;
(4)平移不變性。
次可加性條件保證了組合的風險小於等於構成組合的每個部分風險的和,這一條件與我們進行分散性投資可以降低非系統風險相一致,是一個風險度量模型應具有的重要的屬性,在實際中如銀行的資本金確定和化組合確定中也具有重要的意義。目前一致性風險度量模型有:
(1)CVaR模型(Condition Value at Risk):條件風險價值(CVaR)模型是指在正常市場條件下和一定的置信水平a上,測算出在給定的時間段內損失超過VaRa的條件期望值。CVaR模型在一定程度上克服了VaR模型的缺點不僅考慮了超過VaR值的頻率,而且考慮了超過VaR值損失的條件期望,有效的改善了VaR模型在處理損失分布的後尾現象時存在的問題。當證券組合損失的密度函數是連續函數時,CVaR模型是一個一致性風險度量模型,具有次可加性,但當證券組合損失的密度函數不是連續函數時,CVaR模型不再是一致性風險度量模型,即CVaR模型不是廣義的一致性風險度量模型,需要進行一定的改進。
(2)ES模型(Expected Shortfall):ES模型是在CVaR基礎上的改進版,它是一致性風險度量模型。如果損失X的密度函數是連續的,則ES模型的結果與CVaR模型的結果相同;如果損失X的密度函數是不連續的,則兩個模型計算出來的結果有一定差異。
(3)DRM模型(Distortion Risk-Measure):DRM通過一個測度變換得到一類新的風險度量指標。DRM模型包含了諸如VaR、CVaR等風險度量指標,它是一類更廣義的風險度量指標。
(4)譜風險測度:2002年,Acerbi對ES進行了推廣,提出了譜風險測度(Spectral Risk Measure)的概念,並證明了它是一致性風險度量。但是該測度實際計算的難度很大,維數過高時,即使轉化成線性規劃問題,計算也相當困難。
Ⅹ 金融資產模型有哪些知識點
同學你好,很高興為您解答!
以下是金融資產轉移知識點內容:
1.持有至到期投資、貸款和應收款項的減值計量的處理原則
(1)持有至到期投資、貸款和應收款項等金融資產發生減值時,應當將該金融資產的賬面價值減記至預計未來現金流量現值,減記的金額確認為資產減值損失,計入當期損益。
(2)在計算預計未來現金流量現值時,採用的折現率應為原實際利率或原合同規定的利率。
(3)短期應收款項的預計未來現金流量與其現值相差很小的,在確定相關減值損失時,可不對其預計未來現金流量進行折現。
(4)對於存在大量性質類似且以攤余成本後續計量金融資產的企業,應當先將單項金額重大的金融資產區分開來,單獨進行減值測試。如有客觀證據表明其已發生減值,應當確認減值損失,計入當期損益。對單項金額不重大的金融資產,可以單獨進行減值測試,或包括在具有類似信用風險特徵的金融資產組合中進行減值測試。
(5)對持有至到期投資、貸款和應收款項等金融資產確認減值損失後,如有客觀證據表明該金融資產價值已恢復,且客觀上與確認該損失後發生的事項有關(如債務人的信用評級已提高等),原確認的減值損失應當予以轉回,計入當期損益。但是,該轉回後的賬面價值不應當超過假定不計提減值准備情況下該金融資產在轉回日的攤余成本。
(6)外幣金融資產在計量減值時,應先按外幣確定折現值,再按資產負債表日的即期匯率折成記賬本位幣額,最後與其賬面記賬本位幣比較認定減值損失。
(7)減值損失計量中計算未來現金流量折現所採用的折現率應作為後續利息收入的利率標准。
2.可供出售金融資產的減值計量的處理原則
(1)可供出售金融資產發生減值時,即使該金融資產沒有終止確認,原直接計入所有者權益的因公允價值下降形成的累計損失,也應當予以轉出,計入當期損益。
確定可供出售金融資產發生減值的會計分錄
借:資產減值損失【按應減記的金額】
資本公積—其他資本公積【原計入資本公積的累計收益】
貸:資本公積—其他資本公積【原計入資本公積的累計損失】
可供出售金融資產—公允價值變動【按其差額】
(2)對於已確認減值損失的可供出售債務工具,在隨後的會計期間公允價值已上升且客觀上與確認原減值損失確認發生的事項有關的,原確認的減值損失應當予以轉回,計入當期損益。
借:可供出售金融資產—公允價值變動【應按原確認的減值損失】
貸:資產減值損失
(3)可供出售權益工具投資發生的減值損失,在該權益工具價值回升時,應通過權益轉回,不得通過損益轉回。
借:可供出售金融資產—公允價值變動
貸:資本公積—其他資本公積
感謝您的提問,更多財會問題歡迎提交給高頓企業知道。
高頓祝您生活愉快!