當前位置:首頁 » 退市影響 » 大數據在股票的不良影響嗎

大數據在股票的不良影響嗎

發布時間: 2021-04-28 21:00:17

① 大數據能不能預測股市

大數據對於很多的地方都是非常有用的,但是,是否也有大數據不能做到的?我覺得很多時候,大數據只能說作為一個參考的方向,並不能准確的作出判斷,或者給出答案。首先大數據是一個有科學根據的一個參考物,因為有大量的數據,有大量的參考物,所以,這件事情結果跟大數據一致的概率變得會跟大數據所統計的相差不遠,這就是我們的大數據擁有的功能。

我們的股市,說實話我以前的工作是金融方面的也接觸過股市,對於股市的話,首先影響我們股市的一些因素有哪些?從宏觀來說,像國家的一些政策調控,包括我們公司的一些政策變化,股東的一些變動,或者說我們現在在整個股市來說什麼樣的一個趨勢。

我們如果從技術層面,就是可以通過我們的一些k線圖,或者我們的一些kdj指標,很多的一些分析股票的一些指標來判斷,當然這些指標的話並不是百分之百,都是金錢。而是說這些指標,其實也就是通過一些大量的,我們以前的歷史數據,其實都是已經是歷史性的,所以總結出來的這樣一個圖案,便於我們能進行分析。

這樣一個指標的話,其實跟我們的大數據就非常的類似,我們說大數據到底能不能預測故事?這個真的不能具體的回答,因為預測這個事情也就是說對於未來的股市的一個判斷,這其實是很難的,我們很多的時候看到的都只是表面上的,大數據來說,他可以給出一個方向,或者能夠得出的結論跟未來行情的變化正確的概率是非常高的,但是我們不能百分之百肯定,他得出的結論是正確的,所以大數據他可以預測股市一個大致方向,但不不能保證他預測的是正確的,可以作為一個參考。

② 大數據現在非常火,到底什麼是大數據,能炒股嗎

所謂的大數據,簡單說是對大量、動態、能持續的數據,通過運用新系統、新工具、新模型的挖掘,從而獲得具有洞察力和新價值的東西,是一種新的分析理念。大數據在一些金融工具中已經有體現了,大家不妨搜一款叫超級雲腦的工具,就是用的大數據。

③ 大數據對投資管理的影響

正在來臨的大數據時代,金融機構之間的競爭將在網路信息平台上全面展開,說到底就
是「數據為王」。誰掌握了數據,誰就擁有風險定價能力,誰就可以獲得高額的風險收益,最終贏得競爭優勢。中國金融業正在步入大數據時代的初級階段。經過多年的發展與積累,目前國內金融機構的數據量已經達到100TB以上級別,並且非結構化數據量正在以更快的速度增長。金融機構行在大數據應用方面具有天然優勢
一方面,
金融企業在業務開展過程中積累了包括客戶身份、資產負債情況、資金收付交易等大量高價值密度的數據,這些數據在運用專業技術挖掘和分析之後,將產生巨大的商業價值;
另一方面,金融機構具有較為充足的預算,可以吸引到實施大數據的高端人才,也有能力採用大數據的最新技術。

總體看,正在興起的大數據技術將與金融業務呈現快速融合的趨勢,給未來金融業的發展
帶來重要機遇。

首先,
大數據推動金融機構的戰略轉型。在宏觀經濟結構調整和利率逐步市場化的大環境
下,國內金融機構受金融脫媒影響日趨明顯,表現為核心負債流失、盈利空間收窄、業務定位亟待調整。業務轉型的關鍵在於創新,但現階段國內金融機構的創新往往淪為監管套利,沒有能夠基於挖掘客戶內在需求,提供更有價值的服務。而大數據技術正是金融機構深入挖掘既有數據,找准市場定位,明確資源配置方向,推動業務創新的重要工具。

其次,
大數據技術能夠降低金融機構的管理和運行成本。通過大數據應用和分析,金融機構能夠准確地定位內部管理缺陷,制訂有針對性的改進措施,實行符合自身特點的管理模式,進而降低管理運營成本。
此外,大數據還提供了全新的溝通渠道和營銷手段,可以更好的了解客戶的消費習慣和行為特徵,及時、准確地把握市場營銷效果。
第三,
大數據技術有助於降低信息不對稱程度,增強風險控制能力。金融機構可以擯棄原來過度依靠客戶提供財務報表獲取信息的業務方式,轉而對其資產價格、賬務流水、相關業
務活動等流動性數據進行動態和全程的監控分析,從而有效提升客戶信息透明度。
目前,先進銀行已經能夠基於大數據,整合客戶的資產負債、交易支付、流動性狀況、
納稅和信用記錄等,對客戶行為進行全方位評價,計算動態違約概率和損失率,提高貸款決策的可靠性。
當然,也必須看到,金融機構在與大數據技術融合的過程中也面臨諸多挑戰和風險。
一是大數據技術應用可能導致金融業競爭版圖的重構。信息技術進步、金融業開放以及監管政策變化,客觀上降低了行業准入門檻,非金融機構更多地切入金融服務鏈條,並且利用自身技術優勢和監管盲區佔得一席之地。而傳統金融機構囿於原有的組織架構和管理模式,無法充分發揮自身潛力,反而可能處於競爭下風。

④ 用大數據炒股,靠譜嗎

因為最近在考察幾個量化交易平台,或許正好能夠回答你的這個問題。
在國外現在量化交易已經非常非常的普及,但是據說在國內只有不到5%,似乎是國內散戶太多的原因。
而量化交易就是能夠通過模型預測未來一段時間的走勢,從而不斷去調整,購買較大勝率的股票、期貨或者大宗商品。
某種程度上來說,這些大數據預測相對於國內的賭徒心理還是有更高的成功率的。

當然,也不能太迷信數據,數據是死的,而人性莫測。在國內,即使你個股再好,還是看出現跑不贏大盤的局面,而且有時候還得考慮人的情緒、政策等等。不過,如果能夠堅持,大數據還是相對靠譜的。觀點僅供參考,投資需謹慎。

⑤ 大數據怎樣影響著金融業

大數據可以挖掘和分析金融信息深層次的內容,使決策者能夠把握重點,引導戰略方向。

正在來臨的大數據時代,金融機構之間的競爭將在網路信息平台上全面展開,說到底就是「數據為王」。誰掌握了數據,誰就擁有風險定價能力,誰就可以獲得高額的風險收益,最終贏得競爭優勢。

中國金融業正在步入大數據時代的初級階段。經過多年的發展與積累,目前國內金融機構的數據量已經達到100TB以上級別,並且非結構化數據量正在以更快的速度增長。金融機構行在大數據應用方面具有天然優勢:一方面,金融企業在業務開展過程中積累了包括客戶身份、資產負債情況、資金收付交易等大量高價值密度的數據,這些數據在運用專業技術挖掘和分析之後,將產生巨大的商業價值;另一方面,金融機構具有較為充足的預算,可以吸引到實施大數據的高端人才,也有能力採用大數據的最新技術。
總體看,正在興起的大數據技術將與金融業務呈現快速融合的趨勢,給未來金融業的發展帶來重要機遇。

首先,大數據推動金融機構的戰略轉型。在宏觀經濟結構調整和利率逐步市場化的大環境下,國內金融機構受金融脫媒影響日趨明顯,表現為核心負債流失、盈利空間收窄、業務定位亟待調整。業務轉型的關鍵在於創新,但現階段國內金融機構的創新往往淪為監管套利,沒有能夠基於挖掘客戶內在需求,提供更有價值的服務。而大數據技術正是金融機構深入挖掘既有數據,找准市場定位,明確資源配置方向,推動業務創新的重要工具。


其次,大數據技術能夠降低金融機構的管理和運行成本。通過大數據應用和分析,金融機構能夠准確地定位內部管理缺陷,制訂有針對性的改進措施,實行符合自身特點的管理模式,進而降低管理運營成本。此外,大數據還提供了全新的溝通渠道和營銷手段,可以更好的了解客戶的消費習慣和行為特徵,及時、准確地把握市場營銷效果。


第三,大數據技術有助於降低信息不對稱程度,增強風險控制能力。金融機構可以擯棄原來過度依靠客戶提供財務報表獲取信息的業務方式,轉而對其資產價格、賬務流水、相關業務活動等流動性數據進行動態和全程的監控分析,從而有效提升客戶信息透明度。目前,先進銀行已經能夠基於大數據,整合客戶的資產負債、交易支付、流動性狀況、納稅和信用記錄等,對客戶行為進行全方位評價,計算動態違約概率和損失率,提高貸款決策的可靠性。

當然,也必須看到,金融機構在與大數據技術融合的過程中也面臨諸多挑戰和風險。

一是大數據技術應用可能導致金融業競爭版圖的重構。信息技術進步、金融業開放以及監管政策變化,客觀上降低了行業准入門檻,非金融機構更多地切入金融服務鏈條,並且利用自身技術優勢和監管盲區佔得一席之地。而傳統金融機構囿於原有的組織架構和管理模式,無法充分發揮自身潛力,反而可能處於競爭下風。

二是大數據的基礎設施和安全管理亟待加強。在大數據時代,除傳統的賬務報表外,金融機構還增加了影像、圖片、音頻等非結構化數據,傳統分析方法已不適應大數據的管理需要,軟體和硬體基礎設施建設都亟待加強。同時,金融大數據的安全問題日益突出,一旦處理不當可能遭受毀滅性損失。近年來,國內金融企業一直在數據安全方面增加投入,但業務鏈拉長、雲計算模式普及、自身系統復雜度提高等,都進一步增加了大數據的風險隱患。

三是大數據的技術選擇存在決策風險。當前,大數據還處於運行模式的探索和成長期,分析型資料庫相對於傳統的事務型資料庫尚不成熟,對於大數據的分析處理仍缺乏高延展性支持,而且它主要仍是面向結構化數據,缺乏對非結構化數據的處理能力。在此情況下,金融企業相關的技術決策就存在選擇錯誤、過於超前或滯後的風險。大數據是一個總體趨勢,但過早進行大量投入,選擇了不適合自身實際的軟硬體,或者過於保守而無所作為都有可能給金融機構的發展帶來不利影響。

應該怎樣將大數據應用於金融企業呢?

盡管大數據在金融企業的應用剛剛起步,目前影響還比較小,但從發展趨勢看,應充分認識大數據帶來的深遠影響。在制訂發展戰略時,董事會和管理層不僅要考慮規模、資本、網點、人員、客戶等傳統要素,還要更加重視對大數據的佔有和使用能力,以及互聯網、移動通訊、電子渠道等方面的研發能力;要在發展戰略中引入和踐行大數據的理念和方法,推動決策從「經驗依賴」型向「數據依靠」型轉化;要保證對大數據的資源投入,把渠道整合、信息網路化、數據挖掘等作為向客戶提供金融服務和創新產品的重要基礎。

(一)推進金融服務與社交網路的融合

我國金融企業要發展大數據平台,就必須打破傳統的數據源邊界,注重互聯網站、社交媒體等新型數據來源,通過各種渠道獲取盡可能多的客戶和市場資訊。首先要整合新的客戶接觸渠道,充分發揮社交網路的作用,增強對客戶的了解和互動,樹立良好的品牌形象。其次是注重新媒體客服的發展,利用各種聊天工具等網路工具將其打造成為與電話客服並行的服務渠道。三是將企業內部數據和外部社交數據互聯,獲得更加完整的客戶視圖,進行更高效的客戶關系管理。四是利用社交網路數據和移動數據等進行產品創新和精準營銷。五是注重新媒體渠道的輿情監測,在風險事件爆發之前就進行及時有效的處置,將聲譽風險降至最低。

(二)處理好與數據服務商的競爭、合作關系

當前各大電商平台上,每天都有大量交易發生,但這些交易的支付結算大多被第三方支付機構壟斷,傳統金融企業處於支付鏈末端,從中獲取的價值較小。為此,金融機構可考慮自行搭建數據平台,將核心話語權掌握在自己的手中。另一方面,也可以與電信、電商、社交網路等大數據平台開展戰略合作,進行數據和信息的交換共享,全面整合客戶有效信息,將金融服務與移動網路、電子商務、社交網路等融合起來。從專業分工角度講,金融機構與數據服務商開展戰略合作是比較現實的選擇;如果自辦電商,沒有專業優勢,不僅費時費力,還可能喪失市場機遇。
(三)增強大數據的核心處理能力

首先是強化大數據的整合能力。這不僅包括金融企業內部的數據整合,更重要的是與大數據鏈條上其他外部數據的整合。目前,來自各行業、各渠道的數據標准存在差異,要盡快統一標准與格式,以便進行規范化的數據融合,形成完整的客戶視圖。同時,針對大數據所帶來的海量數據要求,還要對傳統的數據倉庫技術,特別是數據傳輸方式ETL(提取、轉換和載入)進行流程再造。其次是增強數據挖掘與分析能力,要利用大數據專業工具,建立業務邏輯模型,將大量非結構化數據轉化成決策支持信息。三是加強對大數據分析結論的解讀和應用能力,關鍵是要打造一支復合型的大數據專業團隊,他們不僅要掌握數理建模和數據挖掘的技術,還要具備良好的業務理解力,並能與內部業務條線進行充分地溝通合作。

(四)加大金融創新力度,設立大數據實驗室

可以在金融企業內部專門設立大數據創新實驗室,統籌業務、管理、科技、統計等方面的人才與資源,建立特殊的管理體制和激勵機制。實驗室統一負責大數據方案的制定、實驗、評價、推廣和升級。每次推行大數據方案之前,實驗室都應事先進行單元試驗、穿行測試、壓力測試和返回檢驗;待測試通過後,對項目的風險收益作出有數據支撐的綜合評估。實驗室的另一個任務是對「大數據」進行「大分析」,不斷優化模型演算法。在「方法論上。

(五)加強風險管控,確保大數據安全。

大數據能夠在很大程度上緩解信息不對稱問題,為金融企業風險管理提供更有效的手段,但如果管理不善,「大數據」本身也可能演化成「大風險」。大數據應用改變了數據安全風險的特徵,它不僅需要新的管理方法,還必須納入到全面風險管理體系,進行統一監控和治理。為了確保大數據的安全,金融機構必須抓住三個關鍵環節:一是協調大數據鏈條中的所有機構,共同推動數據安全標准,加強產業自我監督和技術分享;二是加強與監管機構合作交流,藉助監管服務的力量,提升自身的大數據安全水準;三是主動與客戶在數據安全和數據使用方面加強溝通,提升客戶的數據安全意識,形成大數據風險管理的合力效應。

⑥ 大數據帶來的大影響

大數據帶來的大影響_數據分析師考試

如果把「數據化」視為信息社會的初級階段,則名不見經傳的英國科學家維克托·邁爾-舍恩伯格,用他別具洞見的天才新著《大數據時代》首次告訴我們:人類正在進入「數據顛覆傳統」的信息社會中級階段。

在此階段,信息無所不在無所不包,其無限膨脹的天文海量催生了「統計+分類-推理分析=決策」的計算機處理程序(有點像刷卡消費一步到位,節省了算賬找補等繁瑣環節),悄然挑戰「去粗取精、去偽存真、由表及裡、由此及彼」的傳統認識論模式,冥冥之中潛移默化,對我們的生活、工作與思維,對人類「階級斗爭、生產斗爭、科學試驗」三大實踐活動產生著重大而深刻的影響。

大數據點燃

美國政府曾為定期公布消費物價指數CPI以監控通脹率,僱用了大量人員向全美90個城市的商店、辦公室進行電話、傳真拜訪,耗資2.5億美元搜集反饋8萬種商品價格的延時信息。然而麻省理工學院兩位經濟學家採取「大數據」方案,通過一個軟體在互聯網上每天搜集50萬種商品價格即時信息。2008年9月雷曼兄弟公司破產後,該軟體馬上發現了通脹轉為通縮的趨勢,而官方數據直到11月才發現。之後該軟體被暢銷到70多個國家。這一案例充分體現出「大數據」顛覆傳統的力量和變革思維的智慧。

「小數據」時代追求精準,竭力避免不精準信息誤導誤判。然而95%被傳統資料庫拒絕接受的非結構化(非標准)數據,在「大數據」時代的模糊化資料庫中發揮了重要的作用,因為數據越模糊越全面,才能有效避免誤導誤判。

從因果關繫到相關關系的思維變革,是「大數據」顛覆傳統認識論模式的關鍵。電腦畢竟不是人腦,電腦永遠搞不懂氣候與機票價格之間有什麼因果關系。公雞打鳴和天亮之間雖無因果關系,但古人通過公雞打鳴來預報天亮卻很少失敗。「如果數百萬條醫療記錄顯示橙汁和阿司匹林的特定組合對癌症治療有效果,那就用不著通過一次次實驗來探索其具體的葯理機制了」。「蘋果之父」喬布斯就主動試用過一些醫療記錄有效但未經臨床驗證的療法同癌症抗爭。你可以嘲笑喬布斯「不講科學」,但他卻因此多活了好幾年。

從根本上說,所謂「大數據挑戰傳統認識論」,其實是人類把復雜的認識過程「全部打包」給了電腦,而電腦懶得分析推理驗證,只通過統計分類對比,交出「最終答案」就OK了。大數據的精髓在於變「少而精」為「多而全」,變「因果」為「相關」。當實地調研開始被數據採集所替代,當嚴密的實驗開始被非線性邏輯所替代,當「唯一真理」開始被多項選擇所替代,「大數據」就用事實向人類宣告:「知其然不知其所以然」,既是電腦望塵人腦的劣勢,也是電腦超越人腦的優勢!

大數據滲透大世界

不要以為「大數據」只是科幻故事或政府與科學家的「專利」。環顧四周,「大數據」早已滲透我們生活和工作的方方面面,衍生出形形色色的數據超市、數據易趣、數據交友、數據聯誼、數據作坊、數據課堂、數據IB等傳奇版本。從治安管理、交通運輸、醫療衛生、商業貿易、批發零售、公益救援直到政治、軍事、經濟、金融、社會、環境、文藝、體育。

UPS國際快運公司從2000年開始通過「大數據」檢測其遍布全美的6萬輛貨車車隊,統計出各損耗零部件的生命周期,改「備份攜帶」為提前更換,有效預防了半路拋錨造成的嚴重麻煩和巨大損失,每年節省數百萬美元。UPS還依靠「大數據」優化行車路線(例如盡量右轉彎,避免左轉彎),2011年全公司車輛少跑4828萬公里,節省燃料300萬加侖,減少碳排放3萬公噸。

為紐約提供電力支持的愛迪生電力公司,針對每年多起電纜沙井蓋爆炸造成嚴重事故,採取「大數據」手段統計出106種預警先兆,預測2009年可能出事的沙井蓋並嚴加監控。結果位列前十分之一的高危井蓋中,預測准確率達44%。

美國里士滿市警察當局憑經驗認定槍擊事件往往導致犯罪高峰期,「大數據」證明這種高峰期往往出現在槍擊事件後2周左右。孟菲斯市2006年啟動「大數據」系統鎖定了更容易發生犯罪的地點和更容易抓捕罪犯的時間,使重大犯罪發生率下降26%。

沃爾瑪2004年依靠「大數據」發現了颶風前夕銷量增加的各類商品,進而每逢預報便及時設立颶風用品專區,並將手電筒、早餐零食蛋撻等擺放於專區附近,明顯增加了「順便購買」的銷量。

至於「大數據」的經濟價值,僅需略舉數例:2006年微軟以1.1億美元購買了埃齊奧尼的Farecast公司,2008年穀歌以7億美元購買了為Farecast提供數據的ITA Software公司。同年在冰島成立的DataMarket網站乾脆專靠搜集提供聯合國、世界銀行、歐盟統計局等權威機構的免費信息來獲利生存,包括倒賣各類研究機構公開發布的研究數據——只要找到買主,往往願出高價!

大數據創造大金融

金融領域當然是「大數據」的主戰場之一。程序化交易也許是現今最主要的「大數據」新式武器。美國股市每天成交量高達70億股,但其中三分之二的交易量並非由人操作,而是由建立在數學模型和演算法之上的計算機程序自動完成。日新月異的程序化交易只能運用海量數據來預測收益、降低風險。幾乎所有銀行、券商、保險、期貨、QFII和投資公司都開發了自己的程序化交易工具。誰的武器更先進?競爭到最後恐怕還是比誰搜集處理的數據更海量。

一家投資基金通過統計大商場周邊停車場及路口交通擁擠狀況,來預測商場經營及當地經濟狀況,進而預測相關股價走勢,最後居然拿數據統計資料換得了該商場的部分股權。

不少對沖基金通過搜集統計社交網站推特上的市場心情等信息來預測股市的表現。倫敦和加利福尼亞的兩家對沖基金,利用「大數據」形成119份表情圖和18864項獨立的指數,向許多客戶推銷股市每分鍾的「動態表情」:樂觀、憂郁、鎮靜、驚恐、呆滯、害怕、生氣、激憤等,以幫助和帶動投資決策。

在金融機構競相拉客理財的今天,如果能及時搜集處理海量的微博、微信、簡訊,自然也能從茫茫人海中及時發現怦然心動打算開戶的,或一氣之下打算「跳槽」的投資者。

當然,如果投資者都能通過「大數據」直接決策,將「刷卡消費」拓展成「刷卡投資」,那藏龍卧虎的分析師群體和爭雄斗妍的研究報告未來還有市場嗎?

大數據暗藏大隱患

像所有新生事物一樣,大數據也是一把雙刃劍。宏觀上看,「大數據」在各個不同的領域將人類虛擬分割為「數據化」與「被數據化」兩大陣營。持續發酵的「棱鏡門」事件披露了美國政府長期監控全世界的「最高機密」,但美國總統、國會和政府都認定這種監控「天經地義」,是「維護國家核心利益」。雖然社會早已建立起龐大的法律法規體系來保障個人信息安全,但在「大數據」時代,這些體系正蛻變為固若金湯但可以隨意繞過的「馬其諾防線」。

「大數據」導致個人信息被交易、個人隱私被外泄還不算,更大的危險在於「個人行為被預測」。正如作者預言——「這些能預測我們可能生病、拖欠還款甚至犯罪的演算法程序,會讓我們無法購買保險、無法貸款,甚至在犯罪實施前就預先被逮捕」——也許你認為這對全社會來說無疑是好事。可是如果預測系統不完善、軟硬體出差錯、數據搜集處理不當、臨時數據未經檢驗、黑客攻擊、有人惡意或善意開玩笑製造假信息……導致你、你的家庭、你的親朋好友、你的所在單位甚至你的祖國被冤枉被制裁,你還能無動於衷嗎?

微觀上看,即使是出於正當目的採集的「大數據」,仍可能在「擴展開發」過程中產生無法想像的副作用。例如谷歌的街景拍攝和GPS數據為衛星定位和自動駕駛儀提供了關鍵的支持,但同時因其有助於黑幫盜賊便捷挑選有利目標而引發了多國民眾的強烈抗議。當谷歌對圖像背景上的業主房屋、花園等目標進行模糊化處理後,反而引起盜賊更加註意。

無論你驚奇還是恐懼,歡迎還是躲避,關注還是漠視,理解還是拒絕,「大數據」都在加快步伐向我們走來。我們只有順勢而為,趨利避害,才不至於被這個充滿機遇和挑戰的新時代提前淘汰。

以上是小編為大家分享的關於大數據帶來的大影響的相關內容,更多信息可以關注環球青藤分享更多干貨

⑦ 大數據亂了影響徵信嗎大數據已經花了。影響貸款嗎

大數據60分以上屬於高危,目前來說還是有好多貸款不需要看大數據的,而且大數據是比較好養的,近一年或者半年不要點網貸就行

熱點內容
期貨如何定乾坤 發布:2025-08-13 05:55:40 瀏覽:88
a股永不退市的股票 發布:2025-08-13 05:54:26 瀏覽:185
s佳通股票會退市嗎 發布:2025-08-13 05:53:41 瀏覽:52
泰州金融廣場從姜堰怎麼去 發布:2025-08-13 05:20:17 瀏覽:36
月收入七千怎麼理財 發布:2025-08-13 05:00:25 瀏覽:435
國慶怎麼去銀行交維修基金 發布:2025-08-13 04:47:17 瀏覽:674
如何看待股市後市行情 發布:2025-08-13 04:30:09 瀏覽:479
三進股市如何填單 發布:2025-08-13 04:11:40 瀏覽:248
股權集中度用什麼字母體現 發布:2025-08-13 03:50:39 瀏覽:754
電腦如何挖加密貨幣 發布:2025-08-13 03:44:15 瀏覽:630