股票量化投資收益
A. 什麼是量化投資
量化投資指的是一種投資方法,它是指通過數量化方式或計算機程序化發出買賣指令,以得到穩定收益為目標的交易方式。量化投資是一種定性思想的量化應用,它對大量的指標數據進行分析,得出一些有說服力的數據結論,然後通過計算機技術進行數學建模,並進行量化分析,從而得出一個比較契合實際的投資策略。
量化投資是指通過數量化方式及計算機程序化發出買賣指令,以獲取穩定收益為目的的交易方式。在海外的發展已有30多年的歷史,其投資業績穩定,市場規模和份額不斷擴大、得到了越來越多投資者認可。從全球市場的參與主體來看,按照管理資產的規模,全球排名前四以及前六位中的五家資管機構,都是依靠計算機技術來開展投資決策,由量化及程序化交易所管理的資金規模在不斷擴大。
B. 以量化分析方法選股,要怎麼算股票收益率
首先建立各個指標在相應分析期內的「增持」/「減持」組合,通過事後檢驗,統計並分析各指標的「增持」/「減持」組合在分析期內的信息比率與收益率。依據各個指標的「增持」組合的市場表現,判斷該指標的選股能力。
「增持」與「減持」組合的構建方法如下:每次選擇一個指標,依據該指標對行業內個股進行排序。根據指標代表的經濟含義,選擇指標排序最優的前 25%的股票設定為「增持」,後 25%的股票設定為「減持」。將「增持」與「減持」股票,按照流通股市值為權重,組成「增持」與「減持」投資組合。投資組合建立後每隔三個月,根據市場最新的指標數據,對「增持」與「減持」組合進行一次重新調整。
1. 經過眾多的統計分析研究比較,一些短線投資者認為當隨機指標KDJ的K線從下向上穿過D線時,可以買入股票。
2.短線買截的不足之處。從技術分析的角度而言,短線買點都是短線行為在一定時期內,短線買點特別多,同樣短線賣點也特別多,因此投資者據此操作,成功的可能性不大。如果考慮到投資者的交易成本投資者根據短線指標操作股票,成功的概率又進一步降低。另外大多數散戶由於交易設施的不完備,短線操作也不方便。因此我們建議散戶投資者不要輕易用短線的方法買進股票。
3. 短線的交點在決定賣點時,除了前面所討論的方法外,一些短線投資者常常用隨機指標KDJ來決定股票的賣點。由隨機指標KDJ的墓木原理知,當隨機指標KDJ的K線從上向下穿過D線時,投資者可以賣出股票
我用的牛股寶,裡面有個從炒股大賽裡面選出來的牛人榜,這個牛股寶里可以跟著牛人買賣操作,這樣能跟這這些牛人學習很多知識,牛股寶我覺得不錯。你也可以試試。祝你成功。
C. 什麼是量化投資交易策略
一文看懂量化投資策略
閑話基
量化投資在近些年受到越來越多的關注,包括規模、策略、業績。量化投資,是指通過藉助統計學、數學方法,運用計算機從海量歷史數據中,尋找能夠帶來超額收益的多種「大概率」策略,按照策略構建的數量模型嚴格執行投資,力求獲得長期穩定可持續高於平均的超額回報。
跨市場策略涉及外匯兌換、國際期貨交易對沖,交易實現難度大,國內用得少。
由於期貨具有杠桿屬性,這類策略持倉的市值往往很大,有時候甚至超過產品資產總值,導致收益率的波動率是所有量化策略中最大的。在市場出現連續震盪行情時,這樣策略由於杠桿屬性會出現較大的回撤。另外一個對這類策略的一個限制是,目前市場上活躍交易的期貨品種不多,高頻交易很大程度倚重於品種成交量,開平倉時間間隔較短,使得策略容量不大。
D. 什麼是α,β收益,量化投資的策略創建與分析
α收益:一攬子可以自定義低估、同質化並且有波動的股票,不斷買入更便宜的,賣出更貴的,從而獲得的收益。
例如:幾個跟著滬深300的ETF,你發現手中持有的滬深300ETF溢價2%了,而市場上同時存在一個折價1%的ETF,那麼就賣出溢價高的滬深300ETF,去買折價的,這樣雖然始終持有滬深300ETF,但獲得了超越滬深300指數本身的收益,就是α收益。
解釋一下同質化:明顯所有的滬深300ETF是同質化的,也可以認為最小市值20個股票是同質化的,所有銀行股是同質化的,分級A是同質化的。下文中有解釋自定義低估。
β收益:基本面本身上漲是β收益。
例如,自定義最小市值的10個股票為一個指數,這些最小市值從5億漲到20億,這就是β收益。自定義最低股價10個為一個指數,從牛市的5元跌到2元,那麼β收益就是負的
量化策略創建三個步驟:
策略的理論基礎
歷史回測
找到策略黑天鵝。
(一)策略的理論基礎:(大致分為三類):
基本面理論
按基本面又可以分為:1.價值型;2.成長型;3.品質型;按中國特色A股基本面又可以添加;4.小市值型;5.股價型
技術面理論
按技術面又可以分為:1.趨勢型,2.趨勢反轉型,3.縮量反彈,4.指數輪動,5.擇時
風險套利
風險套利(或者稱輪動):不斷買入更便宜的,賣出更貴的。
注意:
有些理論基礎並不牢固,並且不能很好解釋(這也導致了各種投資流派互相不服)
有些量化跳過了理論基礎,直接根據歷史統計進行量化(本文不討論),例如,統計兩會前後漲跌,一季度歷史表現最好板塊
對策略理論的解釋:
基本面策略可以定義什麼是低估,比如低PE是低估,低市值是低估,低股價是低估,高ROE是低估,高成長是低估;也可以自定義低估,PB*PE是低估,總市值*流通市值小是低估
基本面理論提供了一攬子同質化並且有波動的股票。有些基本面策略的股票間波動較小,例如最低PE股,一段時期內總是那麼幾個銀行股;有些波動較大,比如小市值型
技術面理論有些很難定義什麼是低估,比如趨勢型;有些則看似可以定義低估,例如,BIAS最小,20日跌幅最大,其實也不是
能自定義低估的策略是風險套利,不能自定義低估的策略是統計
基本面本身能上漲,就獲得了β收益
我得出的結論是:風險套利策略的核心是對自定義低估的輪動,即不斷獲得α收益!!
如何獲得α收益:大部分基本面策略的收益是因為風險套利獲得的;也就是不斷買入更低估的,賣出更貴的;也就是因為調倉周期內因不同股票的波動而產生收益,因此適當縮短周期有利於提高收益;所以在一年內交易次數越多,alpha收益越大(投資大師說的減少交易次數,並不適用於套利)
理論本身獲得的β收益並不多,甚至為負(價值型由於近幾年市場估值不斷降低,不調倉的話,收益是負的)
我們應當尋找的是:基本面理論本身能上漲,且能提供同質化,波動較大的策略(即獲得α,又獲得β)
統計策略其內在邏輯說服力小,是過去的概率來預測未來
(二)歷史回測:回測中最重要一點是:不要欺騙自己
歷史回測中要用到一個哲學思想,叫做奧卡姆剃刀:較簡單的理論比復雜的理論更好,因為它們更加可檢驗
改變測試起始時間。調倉周期超過2天的策略,應該試遍每個起始時間,取平均收益,這才最接近策略真實歷史回測,因為理論上起始時間變化一兩天對策略收益影響是不大的,如果變化很大就說明過度優化。
不要創建靜態股票池。歷史上每個階段都有大牛股,完全可以收集大牛股作為股票池,算好調倉周期,每個階段買最牛的,收益可以美到不敢想像
不要用PE.PB等指標精確逃頂抄底,最多用來確定一個大致范圍。每次大頂點位都是不同的,這樣的擇時毫無意義。
先用25個以上股票測試,確定策略有效性,再減少數量做策略,如果25個測試無效,那麼一兩個即使收益很好,也該放棄。
改變條件權重。如果稍微改變權重,收益變化很大,那麼就降低策略未來預期收益,別指望策略以後會表現這么好。
盡量從07年開始測試。除非你能確定每個時間市場的風格,顯然這是不可能的。
同一套擇時系統,如果用在策略1上回撤是30%,用在策略2上回撤是15%,你肯定會選擇策略2,如果策略1和2本質上是差不多的策略,別太高興,在未來,策略1和2表現誰好誰壞也是難說的
(三)找到黑天鵝:每個策略都有黑天鵝
價值型,成長型,品質型策略,黑天鵝是過一個季度,可能財務數據完全變了,因此持倉個數不能太少,行業要分開
小市值,低價,低交易額策略,黑天鵝是出現仙股
統計類,技術類策略,黑天鵝是理論本身就不完美
E. 股票量化是什麼
量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。
F. 股票量化交易是什麼
量化交易個以前的股票交易本質沒有區別,只是提高了工作效率,
量化交易分為量化分析和程序化自動交易
量化分析,如果你是普通散戶我現在問幾個問題,第一MACD指標默認參數下,在三千多隻股票日k上近兩年那隻收益最好,那隻虧損最大。這要人工多大的工作量,如果會寫程序代碼,幾行代碼就解決了。在繼續如果調換MACD參數能否增加收益用那幾個參數是最優組合,這要是人工基本無法完成,計算量太大了,但計算機就很快完成了參數優化。
而且量化分析不是技術分析,例如你問一個價值投資者,三千多家上市公司,你知道有多少家連續10年都沒虧損過嗎,同樣幾行代碼就知道。
假如你聽了一個老師的講課,說他的牛x戰法,普散戶聽了你只能價單試試,但量化分析我可以在不同市場不同時間周期,不同品種,進行回測嚴重,優化。這些就是量化分析。
程序化自動交易。
就是利用計算機技術自動交易,這對於散戶比較難實現,簡單的用第三方然間寫幾個交易策略可以實現自動交易。
但當你交易上你就會發現,滑點問題,你的速度不夠快,需要專線網路,需要底層語言的交易系統,高速的硬體設備。
但散戶還是必須要進行量化學習因為這樣才能更好的幫助你分析。
下圖就是最簡單的趨勢指標
G. 什麼是量化投資
定義:是指通過數理統計分析,選擇那些未來回報可能會超越基準的證券進行投資,以期獲取超越指數基金收益的基金。
釋義:區別於普通基金,量化基金主要採用量化投資策略來進行投資組合管理。總的來說,量化基金採用的策略包括:量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、期權套利、演算法交易、資產配置等。對於量化基金的產品設計,雖然量化基金一般都是採用多因素模型對股票進行分析和篩選,但不同的量化基金的側重點是不一樣的,也就是包括投資思路、觀察角度、分析方法在內都是不同的。
在我國證券市場,基本面研究佔主流地位,然而隨著證券市場的不斷發展、證券數目的增加、衍生品的出現等,基金要想戰勝指數的難度也越來越大,量化投資則開始發揮越來越重要的作用,因此我國也涌現出了大批量化基金。
H. 國內股票的量化投資策略有哪些,特別是基本面量化
檸檬給你問題解決的暢快感覺!主要的量化對沖策略有:1、市場中性策略 主要追求的是通過各類對沖手段消除投資組合的大部分或全部系統風險,尋找市場中的相近資產的定價偏差,利用價值回歸理性的時間差,在市場中賺取細小的差價來獲得持續的收益。2、事件驅動套利策略 利用特殊事件造成的對資產價格的錯誤定價,從錯誤定價中謀利。3、相對價值策略 主要是利用證券資產間相對的價值偏差進行獲利。感覺暢快?別忘了點擊採納哦!