克勞德香農股票投資
Ⅰ 克勞德香農的貢獻
香農理論的重要特徵是熵(entropy)的概念,他證明熵與信息內容的不確定程度有等價關系。熵曾經是波爾茲曼在熱力學第二定律引入的概念,我們可以把它理解為分子運動的混亂度。信息熵也有類似意義,例如在中文信息處理時,漢字的靜態平均信息熵比較大,中文是9.65比特,英文是4.03比特。這表明中文的復雜程度高於英文,反映了中文詞義豐富、行文簡練,但處理難度也大。信息熵大,意味著不確定性也大。因此我們應該深入研究,以尋求中文信息處理的深層突破。不能盲目認為漢字是世界上最優美的文字,從而引申出漢字最容易處理的錯誤結論。
香農在進行信息的定量計算的時候,明確地把信息量定義為隨機不定性程度的減少。這就表明了他對信息的理解:信息是用來減少隨機不定性的東西。或香農逆定義:信息是確定性的增加 。 雖然仙農的信息概念比以往的認識有了巨大的進步,但仍存在局限性,這一概念同樣沒有包含信息的內容和價值,只考慮了隨機型的不定性,沒有從根本上回答"信息是什麼"的問題。事實上,香農最初的動機是把電話中的噪音除掉,他給出通信速率的上限,這個結論首先用在電話上,後來用到光纖,現在又用在無線通信上。我們今天能夠清晰地打越洋電話或衛星電話,都與通信信道質量的改善密切相關。
這個實在是太多了,你直接看鏈接吧(怕怕啊,鏈接會被審核好久啊)
Ⅱ 香農公式的相關人物
克勞德·艾爾伍德·香農(Claude Elwood Shannon), 1916年4月30日出生於美國密歇根州,1936年畢業於密歇根大學並獲得數學和電子工程學士學位,1940年獲得麻省理工學院(MIT)數學博士學位和電子工程碩士學位。1941年他加入貝爾實驗室數學部,並一直工作到1972年。在此期間,1956年他成為麻省理工學院(MIT)客座教授,並於1958年成為終生教授。香農於2001年2月24日去世。據傳,香農與大發明家愛迪生有遠親關系。香農的大部分時間是在貝爾實驗室和MIT(麻省理工學院)度過的。1948年至1949年間,他先後發表了《通訊的數學原理》和《雜訊下的通信》,文章闡明了通信的基本問題,給出了通信系統的模型,提出了信息量的數學表達式,並解決了信道容量、信源統計特性、信源編碼、信道編碼等一系列基本技術問題。這兩篇論文被視為資訊理論奠基之作。香農也因此一鳴驚人,被譽為「資訊理論之父」。
Ⅲ 克勞德香農的貢獻
《通訊的數學原理》香農在普林斯頓高級研究所(The Institute for Advanced Study at Princeton)期間,開始思考資訊理論與有效通信系統的問題。從1948年6月到10月,香農在《貝爾系統技術雜志》(Bell System Technical Journal)上連載發表了影像深遠的論文《通訊的數學原理》。1949年,香農又在該雜志上發表了另一著名論文《雜訊下的通信》。在這兩篇論文中,香農解決了過去許多懸而未決的問題:闡明了通信的基本問題,給出了通信系統的模型,提出了信息量的數學表達式,並解決了信道容量、信源統計特性、信源編碼、信道編碼等一系列基本技術問題。兩篇論文成為了資訊理論的基礎性理論著作。那時,他才不過剛剛三十齣頭。 香農的成就轟動了世界,激起了人們對資訊理論的巨大熱情,它向各門學科沖擊,研究規模像滾雪球一樣越來越大。不僅在電子學的其他領域,如計算機、自動控制等方面大顯身手,而且遍及物理學、化學、生物學、心理學、醫學、經濟學、人類學、語音學、統計學、管理學……等學科。它已遠遠地突破了香衣本人所研究和意料的范疇,即從香農的所謂「狹義盾息論」發展到了「廣義資訊理論」。 香農一鳴驚人,成了這門新興學科的奠基人。20世紀80年代以來,當人們在議論未來的時候,人們的注意力又異口同聲的集中到信息領域。按照國際一種流行的說法,未來將是一個高度信息化的社會。信息工業將發展成頭號工業,社會上大多數的人將是在從事後息的生產、加工和流通。這時,人們才能更正確地估價香農工作的全部含義。資訊理論這個曾經只在專家們中間流傳的學說,將來到更廣大的人群之中。香農這個名字也飛出了專家的書齋和實驗室,為更多的人所熟悉和了解。香農被尊稱為是「資訊理論之父」。人們通常將香農於1948年10月發表於《貝爾系統技術學報》上的論文《通信的數學原理》作為現代資訊理論研究的開端。這一文章部分基於哈里·奈奎斯特和拉爾夫·哈特利先前克勞德·香農 這一定義可以用來推算傳遞經二進制編碼後的原信息所需的信道帶寬。熵的概念量度的是消息中所含的信息量,而去除了消息中固有結構所決定的部分,比如,語言結構的冗餘性以及語言中字母、詞的使用頻度等統計特性。資訊理論中熵的概念與物理學中的熵有著緊密的聯系。玻耳茲曼與吉布斯在統計物理學中對熵做了很多的工作。資訊理論中的熵也正是受之啟發。
Ⅳ 香農(Shannon)模式的內容和意義
香農
克勞德·香農(Claude Elwood Shannon,1916-2001)1916年4月30日誕生於美國密西根州的Petoskey。在Gaylord小鎮長大,當時鎮里只有三千居民。父親是該鎮的法官,他們父子的姓名完全相同,都是Claude Elwood Shannon。母親是鎮里的中學校長,姓名是Mabel Wolf Shannon。他生長在一個有良好教育的環境,不過父母給他的科學影響好像還不如祖父的影響大。香農的祖父是一位農場主兼發明家,發明過洗衣機和許多農業機械,這對香農的影響比較直接。此外,香農的家庭與大發明家愛迪生(Thomas Alva Edison,1847-1931)還有遠親關系。
香農的大部分時間是在貝爾實驗室和MIT(麻省理工學院)度過的。在「功成名就」後,香農與瑪麗(Mary Elizabeth Moore)1949年3月27日結婚,他們是在貝爾實驗室相識的,瑪麗當時是數據分析員。他們共有四個孩子:三個兒子Robert、James、Andrew Moore和一個女兒Margarita Catherine。後來身邊還有兩個可愛的孫女。
2001年2月24日,香農在馬薩諸塞州Medford辭世,享年85歲。貝爾實驗室和MIT發表的訃告都尊崇香農為資訊理論及數字通信時代的奠基之父。
1936年香農在密西根大學獲得數學與電氣工程學士學位,然後進入MIT念研究生。
1938年香農在MIT獲得電氣工程碩士學位,碩士論文題目是《A Symbolic Analysis of Relay and Switching Circuits》(繼電器與開關電路的符號分析)。當時他已經注意到電話交換電路與布爾代數之間的類似性,即把布爾代數的「真」與「假」和電路系統的「開」與「關」對應起來,並用1和0表示。於是他用布爾代數分析並優化開關電路,這就奠定了數字電路的理論基?9鶇笱У餒さ悄?Howard Gardner)教授說,「這可能是本世紀最重要、最著名的一篇碩士論文。」
1940年香農在MIT獲得數學博士學位,而他的博士論文卻是關於人類遺傳學的,題目是《An Algebra for Theoretical Genetics》(理論遺傳學的代數學)。這說明香農的科學興趣十分廣泛,後來他在不同的學科方面發表過許多有影響的文章。
在讀學位的同時,他還用部分時間跟溫尼法·布希(Vannevar Bush)教授進行微分分析器的研究。這種分析器是早期的機械模擬計算機,用於獲得常微分方程的數值解。1941年香農發表了《Mathematical theory of the differential analyzer》(微分分析器的數學理論),他寫道:「大多數結果通過證明的定理形式給出。最重要的是處理了一些條件,有些條件可以生成一個或多個變數的函數,有些條件可使常微分方程得到解。還給出了一些注意事項,給出求函數的近似值(不能產生精確值)、求調整率的近似值以及自動控制速率的方法。」
1941年香農以數學研究員的身份進入新澤西州的AT&T貝爾電話公司,並在貝爾實驗室工作到1972年,從24歲到55歲,整整31年。1956年他當了MIT的訪問教授,1958年成為正式教授,1978年退休。
人們描述香農的生活,白天他總是關起門來工作,晚上則騎著他的獨輪車來到貝爾實驗室。他的同事D. Slepian寫到:「我們大家都帶著午飯來上班,飯後在黑板上玩玩數學游戲,但克勞德很少過來。他總是關起門來工作。但是,如果你要找他,他會非常耐心地幫助你。他能立刻抓住問題的本質。他真是一位天才,在我認識的人中,我只對他一人使用這個詞。」
香農與John Riordan一起工作,1942年發表了一篇關於串並聯網路的雙終端數的論文。這篇論文擴展了麥克馬洪(Percy A. MacMahon,1854-1929)1892年在Electrician上發表的論文理論。1948年則創立了資訊理論(information theory)。
在漫長的歲月,他思考過許多問題。除在普林斯頓高等研究院工作過一年外,主要都在MIT和Bell Lab度過。需要說明的是,在二次世界大戰時,香農博士也是一位著名的密碼破譯者(這使筆者想到比他大4歲的圖靈博士)。他在Bell Lab的破譯團隊主要是追蹤德國飛機和火箭,尤其是在德國火箭對英國進行閃電戰時起了很大作用。1949年香農發表了另外一篇重要論文《Communication Theory of Secrecy Systems》(保密系統的通信理論),正是基於這種工作實踐,它的意義是使保密通信由藝術變成科學。
1948年香農在Bell System Technical Journal上發表了《A Mathematical Theory of Communication 》。論文由香農和威沃共同署名。前輩威沃(Warren Weaver,1894-1978)當時是洛克菲勒基金會自然科學部的主任,他為文章寫了序言。後來,香農仍然從事技術工作,而威沃則研究資訊理論的哲學問題。順便提一句,該論文剛發表時,使用的是不定冠詞A,收入論文集時改為定冠詞The。
熵的概念
香農理論的重要特徵是熵(entropy)的概念,他證明熵與信息內容的不確定程度有等價關系。熵曾經是波爾茲曼在熱力學第二定律引入的概念,我們可以把它理解為分子運動的混亂度。信息熵也有類似意義,例如在中文信息處理時,漢字的靜態平均信息熵比較大,中文是9.65比特,英文是4.03比特。這表明中文的復雜程度高於英文,反映了中文詞義豐富、行文簡練,但處理難度也大。信息熵大,意味著不確定性也大。因此我們應該深入研究,以尋求中文信息處理的深層突破。不能盲目認為漢字是世界上最優美的文字,從而引申出漢字最容易處理的錯誤結論。
眾所周知,質量、能量和信息量是三個非常重要的量。
人們很早就知道用秤或者天平計量物質的質量大?H歡頤槍賾諶取⑷劑稀⒐τ肽艿募屏課侍猓僦?9世紀中葉,隨著熱功當量的明確和能量守恆定律的建立才逐漸清楚。能量一詞就是它們的總稱,而能量的計量則通過「卡、焦耳」等新單位的出現而得到解決。
然而,關於文字、數字、圖畫、聲音的知識已有幾千年歷史了。但是它們的總稱是什麼,它們如何統一地計量,直到19世紀末還沒有被正確地提出來,更談不上如何去解決了。20世紀初期,隨著電報、電話、照片、電視、無線電、雷達等的發展,如何計量信號中信息量的問題被隱約地提上日程。
1928年哈特利(R.V. H. Harley)考慮到從D個彼此不同的符號中取出N個符號並且組成一個「詞」的問題。如果各個符號出現的概率相同,而且是完全隨機選取的,就可以得到DN個不同的詞。從這些詞里取了特定的一個就對應一個信息量I。哈特利建議用N log D這個量表示信息量,即I=N log D 。這里的log表示以10為底的對數。後來,1949年控制論的創始人維納也研究了度量信息的問題,還把它引向熱力學第二定律。
但是就信息傳輸給出基本數學模型的核心人物還是香農。1948年香農長達數十頁的論文「通信的數學理論」成了資訊理論正式誕生的里程碑。在他的通信數學模型中,清楚地提出信息的度量問題,他把哈特利的公式擴大到概率pi不同的情況,得到了著名的計算信息熵H的公式:
H=∑-pi log pi
如果計算中的對數log是以2為底的,那麼計算出來的信息熵就以比特(bit)為單位。今天在電腦和通信中廣泛使用的位元組(Byte)、KB、MB、GB等詞都是從比特演化而來。「比特」的出現標志著人類知道了如何計量信息量。香農的資訊理論為明確什麼是信息量概念作出決定性的貢獻。
事實上,香農最初的動機是把電話中的噪音除掉,他給出通信速率的上限,這個結論首先用在電話上,後來用到光纖,現在又用在無線通信上。我們今天能夠清晰地打越洋電話或衛星電話,都與通信信道質量的改善密切相關。
克勞德·香農在公眾中並不特別知名,但他是使我們的世界能進行立即通信的少數科學家和思想家之一。他是美國科學院院士、美國工程院院士、英國皇家學會會員、美國哲學學會會員。他獲得過許多榮譽和獎勵。例如1949年Morris獎、1955年Ballantine獎、1962年Kelly獎、1966年的國家科學獎章、IEEE的榮譽獎章、1978年Jaquard獎、1983年Fritz獎、1985年基礎科學京都獎。他接受的榮譽學位不勝枚舉,不再贅述。
今天,我們懷念香農,要熟悉他的兩大貢獻:一是信息理論、信息熵的概念;另一是符號邏輯和開關理論。我們更應該學習他好奇心強、重視實踐、追求完美、永不滿足的科學精神,這是他獲得成功的重要經驗。
Ⅳ 克勞德·艾爾伍德·香農的人物資料
克勞德·艾爾伍德·香農(Claude Elwood Shannon,1916-2001)1916年4月30日誕生於美國密西根州的Petoskey。在Gaylord小鎮長大,當時鎮里只有三千居民。父親是該鎮的法官,他們父子的姓名完全相同,都是Claude Elwood Shannon。母親是鎮里的中學校長,姓名是Mabel Wolf Shannon。他生長在一個有良好教育的環境,不過父母給他的科學影響好像還不如祖父的影響大。香農的祖父是一位農場主兼發明家,發明過洗衣機和許多農業機械,這對香農的影響比較直接。此外,香農的家庭與大發明家愛迪生(Thomas Alva Edison,1847-1931)還有遠親關系。香農的大部分時間是在貝爾實驗室和MIT(麻省理工學院)度過的。在「功成名就」後,香農與瑪麗(Mary Elizabeth Moore)1949年3月27日結婚,他們是在貝爾實驗室相識的,瑪麗當時是數據分析員。他們共有四個孩子:三個兒子Robert、James、Andrew Moore和一個女兒Margarita Catherine。後來身邊還有兩個可愛的孫女。
2001年2月24日,香農在馬薩諸塞州Medford辭世,享年84歲。貝爾實驗室和MIT發表的訃告都尊崇香農為資訊理論及數字通信時代的奠基人。
Ⅵ 誰知道克勞德・香農(Claude Shannon)於1937年發表《對繼電器和開關電路中的符號分析》內容求大
1911年:6月15日,美國華爾街金融投資家弗林特(C.Flent)投資霍列瑞斯的製表機公司,成立了全新的CTR公司,但公司創立之初並沒有涉足任何電子領域,反而生產諸如碎紙機或者土豆削皮機之類的產品。 1912年:美國青年發明家德福雷斯特(L.De Forest)在帕洛阿托小鎮首次發現了電子管的放大作用,為電子工業奠定了基礎,而今日的帕洛阿托小鎮也已成為矽谷的中心地帶。 1913年:美國麻省理工學院教授萬布希(V.Bush)領導製造了模擬計算機「微分分析儀」。機器採用一系列電機驅動,利用齒輪轉動的角度來模擬計算結果。 1924年:矽谷之父特曼擔任斯坦福大學教授,對創建HP、成立斯坦福工業園區起到決定性作用 2月,由霍列瑞斯創辦的製表機公司幾經演變,最終更名為國際商用機器公司,即我們今天看到的IBM。 1935年:IBM製造了IBM601穿孔卡片式計算機,該計算機能夠在一秒鍾內計算出乘法運算。 1936年:阿蘭.圖靈發表論文《論可計算數及其在判定問題中的應用》,首次闡明了現代電腦原理,從理論上證明了現代通用計算機存在的可能性,圖靈把人在計算時所做的工作分解成簡單的動作,與人的計算類似,機器需要:(1)存儲器,用於貯存計算結果;(2)一種語言,表示運算和數字;(3)掃描;(4)計算意向,即在計算過程中下一步打算做什麼;(5)執行下一步計算。具體到一步計算,則分成:(1)改變數字可符號;(2)掃描區改變,如往左進位和往右添位等;(3)改變計算意向等。整個計算過程採用了二進位制,這就是後來人們所稱的「圖靈機」。 20多歲的德國工程師楚澤(K.Zuse)研製出了機械可編程計算機Z1,並採用了二進制形式,其理論基礎即來源於布爾代數 1937年:11月,美國AT&T貝爾實驗室研究人員斯蒂比茲(G. Stibitz)製造了電磁式數字計算機「Model-K」。 1938年:克勞德艾爾伍德香農(Claude Elwood Shannon)發表了著名論文《繼電器和開關電路的符號分析》,首次用布爾代數對開關電路進行了相關的分析,並證明了可以通過繼電器電路來實現布爾代數的邏輯運算,同時明確地給出了實現加,減,乘,除等運算的電子電路的設計方法。這篇論文成為開關電路理論的開端。 1939年:元旦,美國斯坦福大學研究生比爾休利特(B.Hewllet)和戴維帕卡德(D.Packard)正式簽署企業合夥協議,創辦了Hewllet-Packard(HP)公司,即國內通稱的惠普公司。 9月,貝爾實驗室研製出M-1型計算機。 10月,約翰.阿塔納索夫(John Vincent Atanasoff(1903-1995))製造了後來舉世聞名的ABC計算機的第一台樣機,並提出了計算機的三條原則,(1)以二進制的邏輯基礎來實現數字運算,以保證精度; (2)利用電子技術來實現控制,邏輯運算和算術運算,以保證計算速度; (3)採用把計算功能和二進制數更新存貯的功能相分離的結構。這就是著名的計算機三原則。 1940年:9月,貝爾實驗室在美國達特默思大學演示M—1型機。他們用電報線把安置在校園內的M—1型機和相連,當場把一個數學問題列印出來並傳輸到紐約,M—1型機在達特默思大學的成功表演,首次實現了人類對計算機進行的遠距離控制的夢想。 控制論之父維納提出了計算機五原則,(1)不是模擬式,而是數字式;(2)由電子元件構成,盡量減少機械部件;(3)採用二進制,而不是十進制;(4)內部存放計算表;(5)在計算機內部存貯數據。 1941年:楚澤完成了Z3計算機的研製工作,這是第一台可編程的電子計算機。可處理7位指數、14位小數。使用了大量的真空管。每秒種能作3到4次加法運算,一次乘法需要3到5秒。 1942年:時任美國依阿華州立大學數學物理教授的阿塔納索夫(John V. Atanasoff)與研究生貝瑞(Clifford Berry)組裝了著名的ABC(Atanasoff-Berry Computer)計算機,共使用了300多個電子管,這也是世界上第一台具有現代計算機雛形的計算機。但是由於美國政府正式參加第二次世界大戰,致使該計算機並沒有真正投入運行。 1943年:貝爾實驗室把U型繼電器裝入計算機設備中,製成了M—2型機,這是最早的編程計算機之一。此後的兩年中,貝爾實驗室相繼研製成功了M-3和M-4型計算機,但都與M-2型類似,只是存儲器容量更大了一些。 10月,綽號為「巨人」的用來破譯德軍密碼的計算機在英國布雷契萊庄園製造成功,此後又製造多台,為第二次世界大戰的勝利立下了汗馬功勞。 1944年:8月7日,由IBM出資,美國人霍德華艾肯(H.Aiken)負責研製的馬克1號計算機在哈佛大學正式運行,它裝備了15萬個元件和長達800公里的電線, 每分鍾能夠進行200次以上運算。女數學家格雷斯霍波(G.Hopper)為它編制了計算程序,並聲明該計算機可以進行微分方程的求解。馬克1號計算機的問世不但實現了巴貝奇的夙願,而且也代表著自帕斯卡計算機問世以來機械計算機和電動計算機的最高水平。 1946年:2月14日,美國賓西法尼亞大學摩爾學院教授莫契利(J. Mauchiy)和埃克特(J.Eckert)共同研製成功了ENIAC (Electronic Numerical Integrator And Computer):計算機。這台計算機總共安裝了17468隻電子管,7200個二極體,70000多電阻器,10000多 只電容器和6000隻繼電器,電路的焊接點多達50萬個,機器被安裝在一排2.75米高的金屬櫃里,佔地面積為170平方米左右,總重量達 到30噸,其運算速度達到每秒鍾5000次加法,可以在3/1000秒時間內做完兩個10位數乘法。
Ⅶ 誰知道克勞德・香農(Claude Shannon)於1937年發表《對繼電器和開關電路中的符號分析》內容
1911年:6月15日,美國華爾街金融投資家弗林特(C.Flent)投資霍列瑞斯的製表機公司,成立了全新的CTR公司,但公司創立之初並沒有涉足任何電子領域,反而生產諸如碎紙機或者土豆削皮機之類的產品。
1912年:美國青年發明家德�6�1福雷斯特(L.De Forest)在帕洛阿托小鎮首次發現了電子管的放大作用,為電子工業奠定了基礎,而今日的帕洛阿托小鎮也已成為矽谷的中心地帶。
1913年:美國麻省理工學院教授萬�6�1布希(V.Bush)領導製造了模擬計算機「微分分析儀」。機器採用一系列電機驅動,利用齒輪轉動的角度來模擬計算結果。
1924年:矽谷之父特曼擔任斯坦福大學教授,對創建HP、成立斯坦福工業園區起到決定性作用
2月,由霍列瑞斯創辦的製表機公司幾經演變,最終更名為國際商用機器公司,即我們今天看到的IBM。
1935年:IBM製造了IBM601穿孔卡片式計算機,該計算機能夠在一秒鍾內計算出乘法運算。
1936年:阿蘭.圖靈發表論文《論可計算數及其在判定問題中的應用》,首次闡明了現代電腦原理,從理論上證明了現代通用計算機存在的可能性,圖靈把人在計算時所做的工作分解成簡單的動作,與人的計算類似,機器需要:(1)存儲器,用於貯存計算結果;(2)一種語言,表示運算和數字;(3)掃描;(4)計算意向,即在計算過程中下一步打算做什麼;(5)執行下一步計算。具體到一步計算,則分成:(1)改變數字可符號;(2)掃描區改變,如往左進位和往右添位等;(3)改變計算意向等。整個計算過程採用了二進位制,這就是後來人們所稱的「圖靈機」。
20多歲的德國工程師楚澤(K.Zuse)研製出了機械可編程計算機Z1,並採用了二進制形式,其理論基礎即來源於布爾代數
1937年:11月,美國AT&T貝爾實驗室研究人員斯蒂比茲(G. Stibitz)製造了電磁式數字計算機「Model-K」。
1938年:克勞德�6�1艾爾伍德�6�1香農(Claude Elwood Shannon)發表了著名論文《繼電器和開關電路的符號分析》,首次用布爾代數對開關電路進行了相關的分析,並證明了可以通過繼電器電路來實現布爾代數的邏輯運算,同時明確地給出了實現加,減,乘,除等運算的電子電路的設計方法。這篇論文成為開關電路理論的開端。
1939年:元旦,美國斯坦福大學研究生比爾�6�1休利特(B.Hewllet)和戴維�6�1帕卡德(D.Packard)正式簽署企業合夥協議,創辦了Hewllet-Packard(HP)公司,即國內通稱的惠普公司。
9月,貝爾實驗室研製出M-1型計算機。
10月,約翰.阿塔納索夫(John Vincent Atanasoff(1903-1995))製造了後來舉世聞名的ABC計算機的第一台樣機,並提出了計算機的三條原則,(1)以二進制的邏輯基礎來實現數字運算,以保證精度; (2)利用電子技術來實現控制,邏輯運算和算術運算,以保證計算速度; (3)採用把計算功能和二進制數更新存貯的功能相分離的結構。這就是著名的計算機三原則。
1940年:9月,貝爾實驗室在美國達特默思大學演示M—1型機。他們用電報線把安置在校園內的M—1型機和相連,當場把一個數學問題列印出來並傳輸到紐約,M—1型機在達特默思大學的成功表演,首次實現了人類對計算機進行的遠距離控制的夢想。
控制論之父維納提出了計算機五原則,(1)不是模擬式,而是數字式;(2)由電子元件構成,盡量減少機械部件;(3)採用二進制,而不是十進制;(4)內部存放計算表;(5)在計算機內部存貯數據。
1941年:楚澤完成了Z3計算機的研製工作,這是第一台可編程的電子計算機。可處理7位指數、14位小數。使用了大量的真空管。每秒種能作3到4次加法運算,一次乘法需要3到5秒。
1942年:時任美國依阿華州立大學數學物理教授的阿塔納索夫(John V. Atanasoff)與研究生貝瑞(Clifford Berry)組裝了著名的ABC(Atanasoff-Berry Computer)計算機,共使用了300多個電子管,這也是世界上第一台具有現代計算機雛形的計算機。但是由於美國政府正式參加第二次世界大戰,致使該計算機並沒有真正投入運行。
1943年:貝爾實驗室把U型繼電器裝入計算機設備中,製成了M—2型機,這是最早的編程計算機之一。此後的兩年中,貝爾實驗室相繼研製成功了M-3和M-4型計算機,但都與M-2型類似,只是存儲器容量更大了一些。
10月,綽號為「巨人」的用來破譯德軍密碼的計算機在英國布雷契萊庄園製造成功,此後又製造多台,為第二次世界大戰的勝利立下了汗馬功勞。
1944年:8月7日,由IBM出資,美國人霍德華�6�1艾肯(H.Aiken)負責研製的馬克1號計算機在哈佛大學正式運行,它裝備了15萬個元件和長達800公里的電線, 每分鍾能夠進行200次以上運算。女數學家格雷斯�6�1霍波(G.Hopper)為它編制了計算程序,並聲明該計算機可以進行微分方程的求解。馬克1號計算機的問世不但實現了巴貝奇的夙願,而且也代表著自帕斯卡計算機問世以來機械計算機和電動計算機的最高水平。
1946年:2月14日,美國賓西法尼亞大學摩爾學院教授莫契利(J. Mauchiy)和埃克特(J.Eckert)共同研製成功了ENIAC (Electronic Numerical Integrator And Computer):計算機。這台計算機總共安裝了17468隻電子管,7200個二極體,70000多電阻器,10000多 只電容器和6000隻繼電器,電路的焊接點多達50萬個,機器被安裝在一排2.75米高的金屬櫃里,佔地面積為170平方米左右,總重量達 到30噸,其運算速度達到每秒鍾5000次加法,可以在3/1000秒時間內做完兩個10位數乘法。
Ⅷ 什麼是香農模型
香農(Shannon)提出並嚴格證明了「在被高斯白雜訊干擾的信道中,計算最大信息傳送速率C公式」:C=Wlog2(1+S/N)。式中:W是信道帶寬(赫茲),S是信道內所傳信號的平均功率(瓦),N是信道內部的高斯雜訊功率(瓦)。
該式即為著名的香農公式,顯然,信道容量與信道帶寬成正比,同時還取決於系統信噪比以及編碼技術種類。香農定理指出,如果信息源的信息速率R小於或者等於信道容量C。
那麼,在理論上存在一種方法可使信息源的輸出能夠以任意小的差錯概率通過信道傳輸。該定理還指出:如果R>C,則沒有任何辦法傳遞這樣的信息,或者說傳遞這樣的二進制信息的差錯率為1/2。
(8)克勞德香農股票投資擴展閱讀
事實上,香農最初的動機是把電話中的噪音除掉,他給出通信速率的上限,這個結論首先用在電話上,後來用到光纖,截止2013又用在無線通信上。
能夠清晰地打越洋電話或衛星電話,都與通信信道質量的改善密切相關。克勞德·香農在公眾中並不特別知名,但他是使世界能進行即時通信的少數科學家和思想家之一。
他是美國科學院院士、美國工程院院士、英國皇家學會會員、美國哲學學會會員。他獲得過許多榮譽和獎勵。例如1949年Morris獎、1955年Ballantine獎、1962年Kelly獎、1966年的國家科學獎章、IEEE的榮譽獎章、1978年Jaquard獎、1983年Fritz獎、1985年基礎科學京都獎。