投資股票的p值是什麼
1. 統計P值是什麼,怎麼算
P值(P value)就是當原假設為真時所得到的樣本觀察結果或更極端結果出現的概率。如果P值很小,說明原假設情況的發生的概率很小,而如果出現了,根據小概率原理,我們就有理由拒絕原假設,P值越小,我們拒絕原假設的理由越充分。
總之,P值越小,表明結果越顯著。但是檢驗的結果究竟是「顯著的」、「中度顯著的」還是「高度顯著的」需要我們自己根據P值的大小和實際問題來解決。
計算:
為理解P值的計算過程,用Z表示檢驗的統計量,ZC表示根據樣本數據計算得到的檢驗統計量值。
1、左側檢驗
(1)投資股票的p值是什麼擴展閱讀
美國統計協會公布了P值使用的幾大准則:
准則1:P值可以表達的是數據與一個給定模型不匹配的程度
這條准則的意思是說,我們通常會設立一個假設的模型,稱為「原假設」,然後在這個模型下觀察數據在多大程度上與原假設背道而馳。P值越小,說明數據與模型之間越不匹配。
准則2:P值並不能衡量某條假設為真的概率,或是數據僅由隨機因素產生的概率。
這條准則表明,盡管研究者們在很多情況下都希望計算出某假設為真的概率,但P值的作用並不是這個。P值只解釋數據與假設之間的關系,它並不解釋假設本身。
准則3:科學結論、商業決策或政策制定不應該僅依賴於P值是否超過一個給定的閾值。
這一條給出了對決策制定的建議:成功的決策取決於很多方面,包括實驗的設計,測量的質量,外部的信息和證據,假設的合理性等等。僅僅看P值是否小於0.05是非常具有誤導性的。
准則4:合理的推斷過程需要完整的報告和透明度。
這條准則強調,在給出統計分析的結果時,不能有選擇地給出P值和相關分析。舉個例子來說,某項研究可能使用了好幾種分析的方法。
而研究者只報告P值最小的那項,這就會使得P值無法進行解釋。相應地,聲明建議研究者應該給出研究過程中檢驗過的假設的數量,所有使用過的方法和相應的P值等。
准則5:P值或統計顯著性並不衡量影響的大小或結果的重要性。
這句話說明,統計的顯著性並不代表科學上的重要性。一個經常會看到的現象是,無論某個效應的影響有多小,當樣本量足夠大或測量精度足夠高時,P值通常都會很小。反之,一些重大的影響如果樣本量不夠多或測量精度不夠高,其P值也可能很大。
准則6:P值就其本身而言,並不是一個非常好的對模型或假設所含證據大小的衡量。
簡而言之,數據分析不能僅僅計算P值,而應該探索其他更貼近數據的模型。
聲明之後還列舉出了一些其他的能對P值進行補充的分析方手段,比如置信區間,貝葉斯方法,似然比,FDR(False Discovery Rate)等等。這些方法都依賴於一些其他的假定,但在一些特定的問題中會比P值更為直接地回答諸如「哪個假定更為正確」這樣的問題。
聲明最後給出了對統計實踐者的一些建議:好的科學實踐包括方方面面,如好的設計和實施,數值上和圖形上對數據進行匯總,對研究中現象的理解,對結果的解釋,完整的報告等等——科學的世界裡,不存在哪個單一的指標能替代科學的思維方式。
2. 回歸分析p值是什麼意思
P值是拒絕原假設的值。
回歸系數P的檢驗是t檢驗,當P<α值,即回歸系數顯著,拒絕原假設。
回歸模型檢驗是檢驗模型是否合適,通過F檢驗,當F檢驗P<α,則模型顯著,即反映的總體回歸。
通過這兩種檢驗,而且符合經濟自然規律後的模型可預測。
如果在回歸分析中,只包括一個自變數和一個因變數,且二者的關系可用一條直線近似表示,這種回歸分析稱為一元線性回歸分析。如果回歸分析中包括兩個或兩個以上的自變數,且自變數之間存在線性相關,則稱為多重線性回歸分析。
(2)投資股票的p值是什麼擴展閱讀:
在許多自變數共同影響著一個因變數的關系中,判斷哪個(或哪些)自變數的影響是顯著的,哪些自變數的影響是不顯著的,將影響顯著的自變數加入模型中,而剔除影響不顯著的變數,通常用逐步回歸、向前回歸和向後回歸等方法。
利用所求的關系式對某一生產過程進行預測或控制。回歸分析的應用是非常廣泛的,統計軟體包使各種回歸方法計算十分方便。
在回歸分析中,把變數分為兩類。一類是因變數,它們通常是實際問題中所關心的一類指標,通常用Y表示;而影響因變數取值的的另一類變數稱為自變數,用X來表示。
回歸分析研究的主要問題是:
(1)確定Y與X間的定量關系表達式,這種表達式稱為回歸方程;
(2)對求得的回歸方程的可信度進行檢驗;
(3)判斷自變數X對因變數Y有無影響;
(4)利用所求得的回歸方程進行預測和控制。
3. P值是什麼意識
手動擋P擋是程序自動模式:這是屬於可以調整參數值(光圈,快門,ISO,曝光補償)的模式,但是相應你也需要一些攝影的初步知識!
4. 統計學的P值中的P是什麼含義
不是。
P值(P
value)就是當原假設為真時所得到的樣本觀察結果或更極端結果出現的概率。如果P值很小,說明原假設情況的發生的概率很小,而如果出現了,根據小概率原理,我們就有理由拒絕原假設,P值越小,我們拒絕原假設的理由越充分。總之,P值越小,表明結果越顯著。但是檢驗的結果究竟是「顯著的」、「中度顯著的」還是「高度顯著的」需要我們自己根據P值的大小和實際問題來解決。R·A·Fisher(1890-1962)作為一代假設檢驗理論的創立者,在假設檢驗中首先提出P值的概念。
5. 統計學p值的含義是什麼
P值是用來判定假設檢驗結果的一個參數,也可以根據不同的分布使用分布的拒絕域進行比較。由R·A·Fisher首先提出。
P值(P value)就是當原假設為真時,比所得到的樣本觀察結果更極端的結果出現的概率。如果P值很小,說明原假設情況的發生的概率很小,而如果出現了,根據小概率原理,我們就有理由拒絕原假設,P值越小,我們拒絕原假設的理由越充分。
總之,P值越小,表明結果越顯著。但是檢驗的結果究竟是「顯著的」、「中度顯著的」還是「高度顯著的」需要我們自己根據P值的大小和實際問題來解決。
定義
p值是指在一個概率模型中,統計摘要(如兩組樣本均值差)與實際觀測數據相同,或甚至更大這一事件發生的概率。
換言之,是檢驗假設零假設成立或表現更嚴重的可能性。p值若與選定顯著性水平(0.05或0.01)相比更小,則零假設會被否定而不可接受。然而這並不直接表明原假設正確。p值是一個服從正態分布的隨機變數,在實際使用中因樣本等各種因素存在不確定性。產生的結果可能會帶來爭議。
(5)投資股票的p值是什麼擴展閱讀:
歷史
1925年,英國遺傳學家兼統計學家羅納德·費雪(Ronald Fisher)出版了《研究者的統計方法》(Statistical Methods for Research Workers)一書。這本書的書名在當時看起來並不會「暢銷」,但實際上這本書卻取得了巨大的成功,而且還使費雪成為現代統計學之父。
在這本書中,他著眼於研究人員如何將統計檢驗理論應用於實際數據,以便基於數據得出他們所發現的結論。當使用某個統計假設來做檢驗時,該檢驗能夠概述數據與其假設的模型之間的兼容性,並生成一個p值。
費雪建議,作為一個方便的指南,研究人員可以考慮將p值設為0.05。對於這一點,他專門論述道:「在判斷某個偏差是否應該被認為是顯著的時候,將這一閾值作為判斷標準是很方便的。」
他還建議,p值低於該閾值的結論是可靠的,因此不要把時間花在大於該閾值的統計結論上。因此,費雪的這一建議誕生了p小於0.05等價於所謂的統計顯著性,這成了 「顯著」的數學定義。
6. 求問統計學里的P值是什麼含義請用通俗易懂的語言解釋,謝謝!
專業上,p值為結果可信程度的一個遞減指標,p值越大,我們越不能認為樣本中變數的關聯是總體中各變數關聯的可靠指標。p值是將觀察結果認為有效即具有總體代表性的犯錯概率。如p=0.05提示樣本中變數關聯有5%的可能是由於偶然性造成的。即
假設總體中任意變數間均無關聯,我們重復類似實驗,會發現約20個實驗中有一個實驗,我們所研究的變數關聯將等於或強於我們的實驗結果。(這並不是說如果變數間存在關聯,我們可得到5%或95%次數的相同結果。
當總體中的變數存在關聯,重復研究和發現關聯的可能性與設計的統計學效力有關。)在許多研究領域,0.05的p值通常被認為是可接受錯誤的邊界水平。
(6)投資股票的p值是什麼擴展閱讀
所分析變數在總體中呈正態分布,即滿足所謂的正態假設。許多觀察變數的確是呈正態分布的,這也是正態分布是現實世界的基本特徵的原因。
當人們用在正態分布基礎上建立的檢驗分析非正態分布變數的數據時問題就產生了,。這種條件下有兩種方法:一是用替代的非參數檢驗(即無分布性檢驗),但這種方法不方便,因為從它所提供的結論形式看,這種方法統計效率低下、不靈活。
另一種方法是:當確定樣本量足夠大的情況下,通常還是可以使用基於正態分布前提下的檢驗。後一種方法是基於一個相當重要的原則產生的,該原則對正態方程基礎上的總體檢驗有極其重要的作用。即,隨著樣本量的增加,樣本分布形狀趨於正態,即使所研究的變數分布並不呈正態。
7. 統計分析中,p值和t值各是什麼
1、t值
T檢驗,亦稱student t檢驗(Student's t test),主要用於樣本含量較小(例如n < 30),總體標准差σ未知的正態分布。
T檢驗是用t分布理論來推論差異發生的概率,從而比較兩個平均數的差異是否顯著。它與f檢驗、卡方檢驗並列。t檢驗是戈斯特為了觀測釀酒質量而發明的,並於1908年在Biometrika上公布 。
2、P值
P值是用來判定假設檢驗結果的一個參數,也可以根據不同的分布使用分布的拒絕域進行比較。由R·A·Fisher首先提出。
P值(P value)就是當原假設為真時所得到的樣本觀察結果或更極端結果出現的概率。如果P值很小,說明原假設情況的發生的概率很小,而如果出現了,根據小概率原理,我們就有理由拒絕原假設,P值越小,我們拒絕原假設的理由越充分。
(7)投資股票的p值是什麼擴展閱讀
實用舉例
1、t檢驗可用於比較男女身高是否存在差別
為了進行獨立樣本t檢驗,需要一個自(分組)變數(如性別:男、女)與一個因變數(如身高測量值)。根據自變數的特定值,比較各組中因變數的均值。用t檢驗比較下列男、女兒童身高的均值 。
假設
H0:男平均身高 = 女平均身高
H1:男平均身高 ≠ 女平均身高
選用雙側檢驗:選用α=0.05的統計顯著水平
2、P值
從研究總體中抽取一個隨機樣本計算檢驗統計量的值計算概率P值或者說觀測的顯著水平,即在假設為真時的前提下,檢驗統計量大於或等於實際觀測值的概率。
如果P<0.01,說明是較強的判定結果,拒絕假定的參數取值。
如果0.01<P值<0.05,說明較弱的判定結果,拒絕假定的參數取值。
如果P值>0.05,說明結果更傾向於接受假定的參數取值。
8. p值是什麼意思
統計學意義(p值)ZT
結果的統計學意義是結果真實程度(能夠代表總體)的一種估計方法。專業上,p值為結果可信程度的一個遞減指標,p值越大,我們越不能認為樣本中變數的關聯是總體中各變數關聯的可靠指標。p值是將觀察結果認為有效即具有總體代表性的犯錯概率。如p=0.05提示樣本中變數關聯有5%的可能是由於偶然性造成的。即假設總體中任意變數間均無關聯,我們重復類似實驗,會發現約20個實驗中有一個實驗,我們所研究的變數關聯將等於或強於我們的實驗結果。(這並不是說如果變數間存在關聯,我們可得到5%或95%次數的相同結果,當總體中的變數存在關聯,重復研究和發現關聯的可能性與設計的統計學效力有關。)在許多研究領域,0.05的p值通常被認為是可接受錯誤的邊界水平。
在最後結論中判斷什麼樣的顯著性水平具有統計學意義,不可避免地帶有武斷性。換句話說,認為結果無效而被拒絕接受的水平的選擇具有武斷性。實踐中,最後的決定通常依賴於數據集比較和分析過程中結果是先驗性還是僅僅為均數之間的兩兩>比較,依賴於總體數據集里結論一致的支持性證據的數量,依賴於以往該研究領域的慣例。通常,許多的科學領域中產生p值的結果≤0.05被認為是統計學意義的邊界線,但是這顯著性水平還包含了相當高的犯錯可能性。結果0.05≥p>0.01被認為是具有統計學意義,而0.01≥p≥0.001被認為具有高度統計學意義。但要注意這種分類僅僅是研究基礎上非正規的判斷常規。
所有的檢驗統計都是正態分布的嗎並不完全如此,但大多數檢驗都直接或間接與之有關,可以從正態分布中推導出來,如t檢驗、f檢驗或卡方檢驗。這些檢驗一般都要求:所分析變數在總體中呈正態分布,即滿足所謂的正態假設。許多觀察變數的確是呈正態分布的,這也是正態分布是現實世界的基本特徵的原因。當人們用在正態分布基礎上建立的檢驗分析非正態分布變數的數據時問題就產生了,(參閱非參數和方差分析的正態性檢驗)。這種條件下有兩種方法:一是用替代的非參數檢驗(即無分布性檢驗),但這種方法不方便,因為從它所提供的結論形式看,這種方法統計效率低下、不靈活。另一種方法是:當確定樣本量足夠大的情況下,通常還是可以使用基於正態分布前提下的檢驗。後一種方法是基於一個相當重要的原則產生的,該原則對正態方程基礎上的總體檢驗有極其重要的作用。即,隨著樣本量的增加,樣本分布形狀趨於正態,即使所研究的變數分布並不呈正態。