投資組合中有兩只構成股票股票a
『壹』 某投資組合由AB兩種股票組成,計算A與B的相關系數,要求哪些值
邏輯有嚴重問題。直接全投A即可。
做相關性分析,投資A、B股票,計算A、B股票之間的相關系數和A與組合的相關系數、B與組合的相關系數,這兩個相關系數不是一回事。
(2)A證券與B證券的相關系數=(3)證券投資組合的預期收益率=12%×80%+16%×20%=12.8%
證券投資組合的標准差=(4)相關系數的大小對投資組合預期收益率沒有影響;相關系數的大小對投資組合風險有影響,相關系數越大,投資組合的風險越大。
(1)投資組合中有兩只構成股票股票a擴展閱讀:
需要指出的是,相關系數有一個明顯的缺點,即它接近於1的程度與數據組數n相關,這容易給人一種假象。因為,當n較小時,相關系數的波動較大,對有些樣本相關系數的絕對值易接近於1;當n較大時,相關系數的絕對值容易偏小。特別是當n=2時,相關系數的絕對值總為1。因此在樣本容量n較小時,我們僅憑相關系數較大就判定變數x與y之間有密切的線性關系是不妥當的。
『貳』 假設證券市場中有股票A和B,其收益和標准差如下表,如果兩只股票的相關系數為-1。
這道題是希望通過運用兩只股票構建無風險的投資組合,由一價原理,該無風險投資組合的收益就是無風險收益率。何為無風險投資組合?即該投資組合收益的標准差為0,由此,設無風險投資組合中股票A的權重為w,則股票B的權重為(1-w),則有:
{(5%w)^2+[10%(1-w)]^2+2*5%*10%(-1)(1-w)w}^(1/2)=0
等式兩邊同時平方,並擴大10000倍(消除百分號),則有:
25(w^2)+100(1-w)^2-100w(1-w)=0
化簡為:
225w^2-300w+100=0
(15w-10)^2=0 則w=2/3
則,該投資組合的收益率為:2%*(2/3)+5%*(1/3)=9%/3=3%
『叄』 \某證券投資基金的投資組合主要由股票和債券構成,其中擁有股票A、B
單位凈值=(資產總值-總負債)/基金總份額
(2000W*10+1000W*8+1500W*6+3億)/2億=3.35元
『肆』 如某投資組合由收益呈完全負相關的兩只股票構成,則( )。 A.該組合不能抵消任何非系統風險 B.該組合
投資組合由收益呈完全負相關的兩只股票構成,則該組合的非系統性風險能完全抵銷。
把投資收益呈負相關的證券放在一起進行組合,一種股票的收益上升而另一種股票的收益下降的兩種股票,稱為負相關股票。投資於兩只呈完全負相關的股票,該組合投資的非系統性風險能完全抵銷。
『伍』 投資學的題目啊!!!急~資產組合P由A.B倆只股票組成,A股系數β=1.2非系統風險σ=20,權重ω=0.6。
組合P的系統風險:β=0.6*1.2+0.4*0.7=1
組合P的非系統風險:σ=0.6*20+0.4*18=19.2
組合P的標准差=(0.6*1.2+0.4*0.7)*0.8=0.8
不知道對不對。
『陸』 某投資者持有A、B二種股票構成的投資組合,各佔40%和60%,它們目前的股價分別是20元/股和10元/股,它
(1)A股票的預期收益率=10%+2.0×(14%-10%)=18%
B股票的預期收益率=10%+1.0×(14%-10%)=14%
投資組合的預期收益率=40%×18%+60%×14%=15.6%
(2)A股票的內在價值=2×(1+5%)/(18%-5%)=16.15元/股,股價為20元/股,價值被高估,可出售;
B股票的內在價值=2/14%=14.28元/股,股價為10元/股,價值被低估,不宜出售
『柒』 某投資組合僅由A、B、C三隻股票構成,其相關數據如下表所示。
根據每隻股票的價值算出期初權重,A=30*200,以此類推。
計算每種情況下每隻股票的收益率,例如A股票繁榮時的收益率為(34.5-30)/30=0.15.
根據計算出的收益率計算每隻股票的期望收益率等於收益率乘以概率,然後組合的收益率就是每隻股票的權重乘以每隻股票的期望收益率。
在Excel中,根據數據計算每隻股票的方差,協方差矩陣。
組合方差就是每隻股票權重的平方乘以方差+2*每兩支股票的權重乘以兩只股票的協方差。
組合標准差就是方差開方。可計算得出結果
『捌』 甲、乙兩只股票組成投資組合,甲、乙兩只股票的β系數分別為0.80和1.45,該組合
資產組合的β系數等於組合中單項資產β系數的加權平均數,資產組合的β系數受組合中所有單項資產的β系數和各種資產在資產組合中所佔的比重兩個因素的影響。
『玖』 假定一投資者現在持有的資產組合中有2隻股票,其中A股票佔60%,B股票佔40%.A股
問的什麼啊,這那的,聽不懂