python股票投資組合
Ⅰ 如何用python實現Markowitz投資組合優化
看這個文章
https://zhuanlan.hu.com/p/20604930?refer=quantstory
用python實現Markowitz投資組合優化
Ⅱ 怎樣用 Python 寫一個股票自動交易的程序
國外有自動交易軟體。只需要寫插件就可以。如果用python重新寫,有些麻煩。如果證券交易公司提供API,就容易。 我記得2004年左右是通過API實現的。 有個朋友做過一個貴金屬的自動交易。不過2年後,虧了不少。
Ⅲ 怎樣用 Python 寫一個股票自動交易的程序
方法一
前期的數據抓取和分析可能python都寫好了,所以差這交易指令介面最後一步。對於股票的散戶,正規的法子是華寶,國信,興業這樣願意給介面的券商,但貌似開戶費很高才給這權利,而且只有lts,ctp這樣的c++介面,沒python版就需要你自己封裝。
方法二
是wind這樣的軟體也有直接的介面,支持部分券商,但也貴,幾萬一年是要的。
方法三
滑鼠鍵盤模擬法,很復雜的,就是模擬鍵盤滑鼠去操作一些軟體,比如券商版交易軟體和大智慧之類的。
方法四
就是找到這些軟體的關於交易指令的底層代碼並更改,不過T+1的規則下,預測准確率的重要性高於交易的及時性,花功夫做數據分析就好,交易就人工完成吧
Ⅳ 用Python 進行股票分析 有什麼好的入門書籍或者課程嗎
個人覺得這問題問的不太對,說句不好的話,你是來搞編程的還是做股票的。
當然,如果題主只是用來搜集資料,看數據的話那還是可以操作一波的,至於python要怎麼入門,個人下面會推薦一些入門級的書籍,通過這些書籍,相信樓主今後會有一個清晰的了解(我們以一個完全不會編程的的新手來看待)。
《Learn Python The Hard Way》,也就是我們所說的笨辦法學python,這絕對是新手入門的第一選擇,裡面話題簡練,是一本以練習為導向的教材。有淺入深,而且易懂。
其它的像什麼,《Python源碼剖析》,《集體智慧編程》,《Python核心編程(第二版)》等題主都可以適當的選擇參讀下,相信都會對題主有所幫助。
最後,還是要重復上面的話題,炒股不是工程學科,它有太多的變數,對於現在的智能編程來說,它還沒有辦法及時的反映那些變數,所以,只能當做一種參考,千萬不可過渡依賴。
結語:pyhton相對來說是一種比較高端的學科,需要有很強的邏輯能力。所以入門是非常困難的,如果真的要學習,是需要很大的毅力去堅持下去的,而且不短時間就能入門了,要有所心理准備。
Ⅳ 如何用python實現Markowitz投資組合優化
多資產的組合配置進行三方面的優化。 1.找到有效前沿。在既定的收益率下使組合的方差最校 2.找到sharpe最優的組合(收益-風險均衡點) 3.找到風險最小的組合
Ⅵ 怎樣用python處理股票
用Python處理股票需要獲取股票數據,以國內股票數據為例,可以安裝Python的第三方庫:tushare;一個國內股票數據獲取包。可以在網路中搜索「Python tushare」來查詢相關資料,或者在tushare的官網上查詢說明文檔。
Ⅶ 如何用Python和機器學習炒股賺錢
相信很多人都想過讓人工智慧來幫你賺錢,但到底該如何做呢?瑞士日內瓦的一位金融數據顧問 Gaëtan Rickter 近日發表文章介紹了他利用 Python 和機器學習來幫助炒股的經驗,其最終成果的收益率跑贏了長期處於牛市的標准普爾 500 指數。雖然這篇文章並沒有將他的方法完全徹底公開,但已公開的內容或許能給我們帶來如何用人工智慧炒股的啟迪。
我終於跑贏了標准普爾 500 指數 10 個百分點!聽起來可能不是很多,但是當我們處理的是大量流動性很高的資本時,對沖基金的利潤就相當可觀。更激進的做法還能得到更高的回報。
這一切都始於我閱讀了 Gur Huberman 的一篇題為《Contagious Speculation and a Cure for Cancer: A Non-Event that Made Stock Prices Soar》的論文。該研究描述了一件發生在 1998 年的涉及到一家上市公司 EntreMed(當時股票代碼是 ENMD)的事件:
「星期天《紐約時報》上發表的一篇關於癌症治療新葯開發潛力的文章導致 EntreMed 的股價從周五收盤時的 12.063 飆升至 85,在周一收盤時接近 52。在接下來的三周,它的收盤價都在 30 以上。這股投資熱情也讓其它生物科技股得到了溢價。但是,這個癌症研究方面的可能突破在至少五個月前就已經被 Nature 期刊和各種流行的報紙報道過了,其中甚至包括《泰晤士報》!因此,僅僅是熱情的公眾關注就能引發股價的持續上漲,即便實際上並沒有出現真正的新信息。」
在研究者給出的許多有見地的觀察中,其中有一個總結很突出:
「(股價)運動可能會集中於有一些共同之處的股票上,但這些共同之處不一定要是經濟基礎。」
我就想,能不能基於通常所用的指標之外的其它指標來劃分股票。我開始在資料庫裡面挖掘,幾周之後我發現了一個,其包含了一個分數,描述了股票和元素周期表中的元素之間的「已知和隱藏關系」的強度。
我有計算基因組學的背景,這讓我想起了基因和它們的細胞信號網路之間的關系是如何地不為人所知。但是,當我們分析數據時,我們又會開始看到我們之前可能無法預測的新關系和相關性。
如果你使用機器學習,就可能在具有已知和隱藏關系的上市公司的寄生、共生和共情關系之上搶佔先機,這是很有趣而且可以盈利的。最後,一個人的盈利能力似乎完全關乎他在生成這些類別的數據時想出特徵標簽(即概念(concept))的強大組合的能力。
我在這類模型上的下一次迭代應該會包含一個用於自動生成特徵組合或獨特列表的單獨演算法。也許會基於近乎實時的事件,這可能會影響那些具有隻有配備了無監督學習演算法的人類才能預測的隱藏關系的股票組。
Ⅷ 如何用Python炒股
如果想直接執行python程序的話可以寫一個.bat新建一個記事本,然後寫一段下面的代碼,最後存成.bat文件,以後直接執行這段代碼就可以了。其實也可以直接執行.py文件c:\program files\python file.py
Ⅸ 如何用python實現Markowitz投資組合優化
m投資組合模型的一個很有力的替代是Index model,或者我們說的single factor model,因為markowitz是需要計算全部股票的協方差和方差的,如果證券的數量很多,計算量會非常大(這些在investment的參考書裡面有),我下面就把原話打給你 first,the model requires a huge number of estimates to fill the covariance matrix.second ,the model does not provide any guideline to the forecasting to the security risk premiums that are essential to construct the efficient frontier of risky assets.第一個是硬傷,單單計算NYSE的股票就要4.5百萬的估計量,而同等條件下index model才需要9002個估計量,這就是為什麼markowitz模型很多人不願意用的願意,而優點也很直接,如果你的估算值是准確的,那麼m模型的結果比其他都准確
Ⅹ 用Python 進行股票分析 有什麼好的入門書籍或者課程嗎
問題不對,你拿股票當工科看了,理工學院里可沒有一個股票分析專業。股票或者投資這行有兩個特點,1.
除了市場數據必看,沒有什麼理論必看。理論跟你實際操作相比是垃圾,這么說不過分;2.
實際能賺錢的經驗,沒有人會公開的。公開會導致失效,會引來對手盤,沒人會跟自己過不去。能賺錢的人基本也沒什麼興趣出書或教課。所以,別嫌給你澆冷水,
如果你想要書籍或者課程的話,就在理工類裡面挑一個接近投資的專業吧,比如
quants。自己沒方向的話,恐怕想求助也難。我是做這個的,但完全是自己摸索。Python
是自學,股票分析也是自己攢經驗值。我的博客或許能給你點啟發:
Jacky
Liu's
Blog
,
但最多是啟發而已。你得想出你自己的點子,然後自己去跟市場求證,謝謝
~