人工智慧應用於股票投資領域
① 人工智慧主要應用在哪些領域
符號運算:符號運算,又稱代數運算,這是一種智能化的計算,處理的是符號。符號可以代表整數、有理數、實數和復數,也可以代表多項式、函數、集合等。長期以來,人們一直盼望有一個可以進行符號運算的計算機軟體。隨著計算機的普及和人工智慧的發展,用計算機進行符號運算的研究迅速的發展,相繼出現了多種功能齊的符號運算軟體,如:Mathematica和Maple。
② 人工智慧的應用領域包括哪些
機器翻譯,智能控制,專家系統,機器人學,語言和圖像理解,遺傳編程機器人工廠,自動程序設計,航天應用,龐大的信息處理,儲存與管理,執行化合生命體無法執行的或復雜或規模龐大的任務等等。
值得一提的是,機器翻譯是人工智慧的重要分支和最先應用領域。不過就已有的機譯成就來看,機譯系統的譯文質量離終極目標仍相差甚遠;而機譯質量是機譯系統成敗的關鍵。
中國數學家、語言學家周海中教授曾在論文《機器翻譯五十年》中指出:要提高機譯的質量,首先要解決的是語言本身問題而不是程序設計問題;單靠若干程序來做機譯系統,肯定是無法提高機譯質量的;
另外在人類尚未明了大腦是如何進行語言的模糊識別和邏輯判斷的情況下,機譯要想達到「信、達、雅」的程度是不可能的。智能家居之後,人工智慧成為家電業的新風口。
影響
人工智慧的長期經濟影響尚不確定。一項針對經濟學家的調查顯示,對於越來越多地使用機器人和人工智慧是否會導致長期失業率大幅上升存在分歧,但他們普遍認為,如果生產力收益重新分配,這可能是一項凈收益。
普華永道2017 年的一項研究認為,到 2030 年,中華人民共和國在經濟上從人工智慧中獲益最多,占 GDP 的26.1%。
一份 2020 年 2 月的歐盟人工智慧白皮書提倡人工智慧以獲取經濟利益,包括「改善醫療保健(例如使診斷更精確,更好地預防疾病),提高農業效率,為減緩和適應氣候變化做出貢獻, 通過預測性維護提高生產系統的效率」,同時承認潛在風險。
以上內容參考網路-人工智慧
③ 人工智慧可以用來炒股嗎
說的神乎其神,人工智慧能用來炒股嗎?
人工智慧在圍棋、象棋、德撲等領域都已經取得了碾壓式勝利,這已經是一個不爭的事實。事實上AlphaGo這樣的AI已經可以用於任何需要理解復雜模式、進行長期計劃、並制定決策的領域。人們不禁想問,還有什麼是人工智慧不能克服的嗎?譬如說,變幻莫測的A股?
對於這個問題,持各種觀點的都不乏其人。探討它實可以分為兩個部分:1. 股市可以預測嗎? 2、 假如可以預測,用機器學習的方法去預測可以嗎?
先回答第一個問題:股市的漲跌可以預測嗎?
如果將股市的價格變化看做一個隨時間變化的序列,Price = Market (t), 我們往往會發現,不管是嘗試用N個模型(線性,非線性, 概率)來進行逼近,即使是建立了符合股價變化的這樣的模型,並且在有足夠多的訓練數據的情況下模擬出了股價,但是這些模型最多隻能在特定的區間能做一些並不十分精準的預測。
美國矽谷「感知力」技術公司讓人工智慧程序全程負責股票交易,與其他一些運用人工智慧的投資公司不同,該公司交易部門只有兩名員工負責監控機器,以確保出現不可控情形時可通過關機終止交易。據報道,「感知力」公司的人工智慧投資系統可以通過經驗學習實現「自主進化」。公司在全球擁有數千台同時運行的機器,其獨特演算法創造了數萬億被稱為「基因」的虛擬交易者。系統利用歷史數據模擬交易,目前可在幾分鍾內模擬1800天的交易量,經過測試,不好的「基因」被剔除,好的「基因」被保留。通過考驗的好「基因」被用於真正的交易。公司員工只需設定好時間、回報率、風險指數等交易指標,剩下的一切都交由機器負責。
公司首席投資官傑夫·霍爾曼透露,目前機器在沒有人為干預情況下掌握著大量股票,每天完成數以百計的交易,持倉期限為數日到幾周。公司說機器的表現已超越他們設定的內部指標,但沒有透露指標的具體內容。
隨著人工智慧技術的持續進步,人工智慧投資成為被學術界和資本看好的領域。英國布里斯托爾大學教授克里斯蒂亞尼尼說,股票投資是十大最有可能被人工智慧改變的行業之一。另一方面,也不是所有的投資商都信任機器,英國對沖基金曼氏金融首席科學家萊德福警告說,不應過度信任人工智慧投資,該領域還遠沒有成熟。雖然有各種各樣具有迷惑性的承諾,很多投資人的錢卻有去無回。
④ 人工智慧在金融投資領域有哪些應用
常見的就是這個了:股市行情預測
許多人都渴望能夠預測股市在任何一天將會做什麼 - 顯而易見的原因。但是機器學習演算法一直在變得越來越近。許多著名的交易公司使用專有系統來預測和執行交易高速和大量。其中很多依靠概率,但即使是交易概率相對較低,以足夠高的速度或速度,也可以為公司帶來巨額利潤。當消費大量數據或者執行交易的速度時,人類不可能競爭得過機器。
常見的人工智慧還可以看這里,人人都應該知道的十大人工智慧和機器學慣用例
⑤ 人工智慧出現在金融領域,股票,期貨等市場,是人工智慧間的博弈還是人智能輔助人類
這個問題很好哩。
人工智慧在金融領域的應用范圍很廣,包括風控,客戶挖掘等等...
在不同的應用場景下,人工智慧與人工智慧之間,人工智慧與人之間有輔助、有博弈。。
⑥ 人工智慧應用領域包括
人工智慧主要應用領域
1、農業:農業中已經用到很多的AI技術,無人機噴撒農葯,除草,農作物狀態實時監控,物料采購,數據收集,灌溉,收獲,銷售等。通過應用人工智慧設備終端等,大大提高了農牧業的產量,大大減少了許多人工成本和時間成本。
2、通信:智能外呼系統,客戶數據處理(訂單管理系統),通信故障排除,病毒攔截(360等),騷擾信息攔截等
3、醫療:利用最先進的物聯網技術,實現患者與醫務人員、醫療機構、醫療設備之間的互動,逐步達到信息化。例:健康監測(智能穿戴設備)、自動提示用葯時間、服用禁忌、剩餘葯量等的智能服葯系統。
4、社會治安:安防監控(數據實時聯網,公安系統可以實時進行數據調查分析)、電信詐騙數據鎖定、犯罪分子抓捕、消防搶險領域(滅火、人員救助、特殊區域作業)等
5、交通領域:航線規劃、無人駕駛汽車、超速、行車不規范等行為整治
6、服務業:餐飲行業(點餐、傳菜,回收餐具,清洗)等,訂票系統(酒店、車票、機票等)的查詢、預定、修改、提醒等
7、金融行業:股票證券的大數據分析、行業走勢分析、投資風險預估等
8、大數據處理:天氣查詢,地圖導航,資料查詢,信息推廣(推薦引擎是基於用戶的行為、屬性(用戶瀏覽行為產生的數據),通過演算法分析和處理,主動發現用戶當前或潛在需求,並主動推送信息給用戶的瀏覽頁面。),個人助理
⑦ 人工智慧的主要應用領域有哪些最好具體點
機器視覺,指紋識別,人臉識別,視網膜識別,虹膜識別,掌紋識別,專家系統,自動規劃,智能搜索,定理證明,博弈,自動程序設計,智能控制,機器人學,語言和圖像理解,遺傳編程等。人工智慧就其本質而言,是對人的思維和信息過程的模擬。對於人的思維模擬可以從兩條途徑進行,一是結構模擬,仿照人腦的結構機制,製造出「類人腦」的機器;二是功能模擬,暫時撇開人腦的內部結構,而從其功能過程進行模擬。現代電子計算機的產生便是對人腦思維功能的模擬,是對人腦思維的信息過程的模擬。
圖奕具有專業的網路科技相關技術。目前,公司擁有近百人的軟體研發團隊,遵循行業技術、管理及安全標准,團隊人員配備完整公司研發方向包含了傳統互聯網、移動互聯網、物聯網、空間地理信息、音視頻處理、大數據分析及應用服務、分布式計算、分布式存儲,自動化發布、自動化部署、自動化測試、持續集成、智能化運維、智能客服、智能推薦等方面,公司長期以科技創新為核心驅動力,與國內眾多知名軟體企業形成戰略合作關系,軟體產品研發能力已成為全省軟體企業前列。
⑧ 人工智慧在金融科技領域有哪些應用
應用場景一:徵信與風控 近幾年,國內P2P和現金貸的大量涌現,說明了個人小額信貸的市場需求巨大。在過去,針對該類小貸用戶,一般單純地依靠地推人員挨家挨戶進行實地徵信。如今,基於大數據和人工智慧技術,可以實現智能徵信和審批,極大地提高工作效率。通過多渠道獲取用戶多維度的數據,如通話記錄、簡訊信息、購買歷史、以及社交網路上的相關留存信息等;然後,從信息中提取各種特徵建立模型,對用戶進行多維度畫像;最後,根據模型評分,對用戶的個人信用進行評估。同樣,對於市場上中小微企業融資難的問題,也可以通過大數據徵信得以解決。 相對於徵信,在風控中,貸前要識別貸款人信息的真實性,還要識別其還款意願和還款能力,貸中通過監控貸款人的行為數據及時發現異常,貸後通過反饋數據補充信用評分。在這個過程中,利用用戶數據積累和人工智慧技術建立有效的智能化風控體系是核心能力,直接決定著一個平台能否持續健康地運營。應用場景二:反欺詐 金融安全是維護金融秩序的基石。與虛擬的社交網路不同,金融用戶需要驗證身份的真實性,其中可能涉及的技術包括人臉識別、語音識別、指紋識別和虹膜識別等。相對於我們人類,人工智慧在此領域往往表現得更加優異,不僅能縮短識別時間,還能降低識別錯誤率。如今,越來越多的人工智慧應用出現在現實生活中,比如指紋付款、掃臉取款等。 此外,人工智慧在網路反欺詐方面也發揮著巨大的作用,機器可以從海量的交易數據中學習知識和規則,發現異常,比如防止盜刷卡、虛假交易、惡意套現、垃圾注冊、營銷作弊等行為,為用戶和機構提供及時可靠的安全保障。應用場景三:智能投顧 智能投顧是在多個市場和大資產類別之間構建投資組合,分散風險,追求長期收益。 與傳統方式有所區別,智能投顧可結合現代資產組合理論和投資者偏好為投資者提供建議,加快釋放投資理財的「長尾」市場,具有傭金低和信息透明等特點。更通俗點說,智能投顧實際上是把私人銀行的服務在線智能化,服務更廣泛的普通老百姓。 當前,智能投顧平台已經在國內市場出現。2016年12月,招商銀行摩羯智投正式上線,這是國內銀行業首家推出的智能投顧服務。據介紹,摩羯智投運用機器學習演算法,融入招行多年的業務經驗,在此基礎上構建了以公募基金為基礎的、全球資產配置的「智能基金組合配置服務」。在客戶進行投資期限和風險收益選擇後,摩羯智投會根據客戶自主選擇的「目標-收益」要求,構建基金組合,由客戶進行決策、「一鍵購買」並享受後續服務,使得投資小白也可以輕松使用。應用場景四:營銷與客服 在金融平台上,如何識別有效的客戶往往是難點。而人工智慧可以通過用戶畫像和大數據模型精準找到用戶,實現精準營銷。 另外,在客服中,用戶咨詢的問題大都是重復性的,而且往往限定在幾個特定的領域內,這些特點使其成為自然語言處理和智能客服機器人的極佳選擇。通過智能客服機器人可以發掘用戶的需求,解釋和推薦產品,還能帶來銷售轉化。智能客服可以解決用戶的大部分問題,在非常確定答案的時候可以直接回答,在不確定時把可能的答案提供給人工客服,由人工客服判斷選擇最佳答案發送給用戶。這樣極大地提升了客服效率和用戶體驗,同時也降低了人力成本。應用場景五:投資決策 在投資機構和投行部門中,日常的工作如收集大量的資料、進行數據分析、報告撰寫等,往往佔用了大量的時間和精力。而在處理海量的數據信息時,機器擁有天然的優勢,通過自然語言處理技術可以理解文本信息,尋找市場變化的內在規律。一個經典案例是沃爾瑪超市發現尿布和啤酒放在一起會增加銷量。大數據可以發現看似毫不相關的事件間的關聯性,應用在投資領域也會有同樣的效果,比如蘋果發布新手機會影響哪些公司的股價等。 人工智慧還能夠根據收集到的市場歷史數據進行預測,分析判斷企業的成長性,從而輔助投資決策。一個著名例子是,美國最大的信用卡行CapitalOne的兩名員工利用職務便利,分析了至少170家上市零售公司的信用卡消費情況,並據此預測這些公司的營業收入,然後提前購入看漲期權或看跌期權,三年內投資收益率高達1800%。雖然是反例,但對於智能預測應用有很好的啟發意義。 此外,機器還可以根據收集到的資料,自動生成大量格式固定的文檔,比如招股說明書、研究報告、盡調報告和投資意向書等,從而提高效率,減少枯燥的重復性工作。
⑨ 人工智慧在金融領域有哪些應用場景和作用
人工智慧在金融領域是可以發揮多樣性作用,但首先我們要了解人工智慧是什麼?
網路上的解釋是:人工智慧,即「人工」和「智能」。「人工」比較好理解,爭議性也不大。有時我們會要考慮什麼是人力所能及製造的,或者人自身的智能程度有沒有高到可以創造人工智慧的地步,等等。但總的來說,「人工系統」就是通常意義下的人工系統。
關於什麼是「智能」,就問題多多了。這涉及到其它諸如意識(CONSCIOUSNESS)、自我(SELF)、思維(MIND)(包括無意識的思維(UNCONSCIOUS_MIND))等等問題。人唯一了解的智能是人本身的智能,這是普遍認同的觀點。但是我們對我們自身智能的理解都非常有限,對構成人的智能的必要元素也了解有限,所以就很難定義什麼是「人工」製造的「智能」了。因此人工智慧的研究往往涉及對人的智能本身的研究。
也就是說利用人本身的智能與分析問題、解決問題,形成一種演算法機制。
在金融中,獲客、風控、身份識別、客服等金融行業中的內容都可以利用人工智慧進行改變,以較容易理解的客服為例,傳統的金融客服都是人工的,而通過人工智慧技術和自然語言處理,可以將客戶問題進行分析,通過演算法給出准確的回復,這就大大節省了金融服務的成本,在這一方面,傳統金融機構並不都具備這樣的技術實力,但是許多大型互聯網公司都結合自身技術優勢對此進行了技術研發,並將研發成果輸出給金融機構,形成了良性循環。