基於模糊聚類分析方法的股票投資風險研究
❶ 模糊聚類分析的常用分類方法
數據分類中,常用的分類方法有多元統計中的系統聚類法、模糊聚類分析等.在模糊聚類分析中,首先要計算模糊相似矩陣,而不同的模糊相似矩陣會產生不同的分類結果;即使採用相同的模糊相似矩陣,不同的閾值也會產生不同的分類結果.「如何確定這些分類的有效性」便成為模糊聚類的要點。
識別研究中的一個重要問題.文獻,把有效性不滿意的原因歸結於數據集幾何結構的不理想.但筆者認為,不同的幾何結構是對實際需要的反映,我們不能排除實際需要而追求所謂的「理想幾何結構」,不理想的分類不應歸因於數據集的幾何結構.針對同一模糊相似矩陣,文獻建立了確定模糊聚類有效性的方法.用固定的顯著性水平,在不同分類的F一統計量和F檢驗臨界值的差中選最大者,即為有效分類.但是,當顯著性水平變化時,此方法的結果也會變化.文獻引進了一種模糊劃分嫡來評價模糊聚類的有效性,並人為規定當兩類的嫡大於一數時,此兩類可合並,通過逐次合並,最終得到有效分類.此方法人為干預較多,當這個規定數不同時,也會得到不同的結果.另外這兩種方法也未比較不同模糊相似矩陣的分類結果. 系統聚類法是基於模糊等價關系的模糊聚類分析法。在經典的聚類分析方法中可用經典等價關系對樣本集X進行聚類。設R是 X上的經典等價關系。對X中的兩個元素x和y,若xRy或(x,y)∈R,則將x和y並為一類,否則x和y不屬於同一類。
相應地,可用X上的模糊等價關系對樣本集X進行模糊聚類。設慒是X上的模糊等價關系,是慒 的隸屬函數。對於任何α∈【0,1】,定義慒 的α截關系 Sα是X上的經典等價關系。根據Sα得到X 的一種聚類,稱為在α水平上的聚類。
應用這種方法,分類的結果與α的取值大小有關。α取值越大,分的類數越多。α小到某一值時,X中的所有樣本歸並為一類。這種方法的優點在於可按實際需要選取α的值,以便得到恰當的分類。
系統聚類法的步驟如下:
①用數字描述樣本的特徵。設被聚類的樣本集為 X={x1,…,xn}。每個樣本均有p種特徵,記作xi=(xi1,…,xip);i=1,2,…,n;xip表示描述樣本xi的第p個特徵的數。 ②規定樣本之間的相似系數rij(0≤rij≤1;i,j=1,…,n)。rij描述樣本xi與xj之間的差異或相似的程度。rij 越接近於1,表明樣本xi與xj之間的差異越小;rij 越接近於0,表明xi與xj之間的差異越大。rij可用主觀評定或集體評分的方法規定,也可用公式計算,如採用夾角餘弦法、最小最大法、算術平均最小法等。
因為rii=1(xi與自身沒有差異),rij=rji(xi與xj之間的差異等同於xj與xi之間的差異),所以由rij(i,j=1,…,n)可得X上的模糊相似關系。
一般,R不具備可傳遞性,因而R不一定是 X上的模糊等價關系。
③運用合成運算R=R⋅R(或R=R⋅R等)求出最接近相似關系R的模糊等價關系S=R(或R等)。若R已是模糊等價關系,則取S=R。
④選取適當水平α(0≤α≤1),得到X 的一種聚類。 逐步聚類法是一種基於模糊劃分的模糊聚類分析法。它是預先確定好待分類的樣本應分成幾類,然後按最優化原則進行再分類,經多次迭代直到分類比較合理為止。
在分類過程中可認為某個樣本以某一隸屬度隸屬於某一類,又以另一隸屬度隸屬於另一類。這樣,樣本就不是明確地屬於或不屬於某一類。若樣本集有 n個樣本要分成c類,則它的模糊劃分矩陣為此c×n模糊劃分矩陣有下列特性:①uij∈【0,1】;i=1,…,c;j=1,…,n。②即每一樣本屬於各類的隸屬度之和為1。③即每一類模糊子集都不是空集。
❷ 聚類分析方法應用於哪些問題的研究
1.聚類分析的特點
聚類分析(cluster analysis)是根據事物本身的特性研究個體的一種方法,目的在於將相似的事物歸類.它的原則是同一類中的個體有較大的相似性,不同類的個體差異性很大.這種方法有三個特徵:適用於沒有先驗知識的分類.如果沒有這些事先的經驗或一些國際、國內、行業標准,分類便會顯得隨意和主觀.這時只要設定比較完善的分類變數,就可以通過聚類分析法得到較為科學合理的類別;可以處理多個變數決定的分類.例如,要根據消費者購買量的大小進行分類比較容易,但如果在進行數據挖掘時,要求根據消費者的購買量、家庭收入、家庭支出、年齡等多個指標進行分類通常比較復雜,而聚類分析法可以解決這類問題;聚類分析法是一種探索性分析方法,能夠分析事物的內在特點和規律,並根據相似性原則對事物進行分組,是數據挖掘中常用的一種技術.
這種較成熟的統計學方法如果在市場分析中得到恰當的應用,必將改善市場營銷的效果,為企業決策提供有益的參考.其應用的步驟為:將市場分析中的問題轉化為聚類分析可以解決的問題,利用相關軟體(如SPSS、SAS等)求得結果,由專家解讀結果,並轉換為實際操作措施,從而提高企業利潤,降低企業成本.
2.應用范圍
聚類分析在客戶細分中的應用
消費同一種類的商品或服務時,不同的客戶有不同的消費特點,通過研究這些特點,企業可以制定出不同的營銷組合,從而獲取最大的消費者剩餘,這就是客戶細分的主要目的.常用的客戶分類方法主要有三類:經驗描述法,由決策者根據經驗對客戶進行類別劃分;傳統統計法,根據客戶屬性特徵的簡單統計來劃分客戶類別;非傳統統計方法,即基於人工智慧技術的非數值方法.聚類分析法兼有後兩類方法的特點,能夠有效完成客戶細分的過程.
例如,客戶的購買動機一般由需要、認知、學習等內因和文化、社會、家庭、小群體、參考群體等外因共同決定.要按購買動機的不同來劃分客戶時,可以把前述因素作為分析變數,並將所有目標客戶每一個分析變數的指標值量化出來,再運用聚類分析法進行分類.在指標值量化時如果遇到一些定性的指標值,可以用一些定性數據定量化的方法加以轉化,如模糊評價法等.除此之外,可以將客戶滿意度水平和重復購買機會大小作為屬性進行分類;還可以在區分客戶之間差異性的問題上納入一套新的分類法,將客戶的差異性變數劃分為五類:產品利益、客戶之間的相互作用力、選擇障礙、議價能力和收益率,依據這些分析變數聚類得到的歸類,可以為企業制定營銷決策提供有益參考.
以上分析的共同點在於都是依據多個變數進行分類,這正好符合聚類分析法解決問題的特點;不同點在於從不同的角度尋求分析變數,為某一方面的決策提供參考,這正是聚類分析法在客戶細分問題中運用范圍廣的體現.
聚類分析在實驗市場選擇中的應用
實驗調查法是市場調查中一種有效的一手資料收集方法,主要用於市場銷售實驗,即所謂的市場測試.通過小規模的實驗性改變,以觀察客戶對產品或服務的反應,從而分析該改變是否值得在大范圍內推廣.
實驗調查法最常用的領域有:市場飽和度測試.市場飽和度反映市場的潛在購買力,是市場營銷戰略和策略決策的重要參考指標.企業通常通過將消費者購買產品或服務的各種決定因素(如價格等)降到最低限度的方法來測試市場飽和度.或者在出現滯銷時,企業投放類似的新產品或服務到特定的市場,以測試市場是否真正達到飽和,是否具有潛在的購買力.前述兩種措施由於利益和風險的原因,不可能在企業覆蓋的所有市場中實施,只能選擇合適的實驗市場和對照市場加以測試,得到近似的市場飽和度;產品的價格實驗.這種實驗往往將新定價的產品投放市場,對顧客的態度和反應進行測試,了解顧客對這種價格的是否接受或接受程度;新產品上市實驗.波士頓矩陣研究的企業產品生命周期圖表明,企業為了生存和發展往往要不斷開發新產品,並使之向明星產品和金牛產品順利過渡.然而新產品投放市場後的失敗率卻很高,大致為66%到90%.因而為了降低新產品的失敗率,在產品大規模上市前,運用實驗調查法對新產品的各方面(外觀設計、性能、廣告和推廣營銷組合等)進行實驗是非常有必要的.
在實驗調查方法中,最常用的是前後單組對比實驗、對照組對比實驗和前後對照組對比實驗.這些方法要求科學的選擇實驗和非實驗單位,即隨機選擇出的實驗單位和非實驗單位之間必須具備一定的可比性,兩類單位的主客觀條件應基本相同.
通過聚類分析,可將待選的實驗市場(商場、居民區、城市等)分成同質的幾類小組,在同一組內選擇實驗單位和非實驗單位,這樣便保證了這兩個單位之間具有了一定的可比性.聚類時,商店的規模、類型、設備狀況、所處的地段、管理水平等就是聚類的分析變數
❸ 模糊聚類分析方法與聚類分析法有哪些優點
模糊聚類(FCM)是聚類分析方法中的一種,是模糊數學融入K-means,對其進行改進。一般的劃分演算法,如K-means,是把數據劃分到不相交的類中的。即每個數據通過計算最終都將屬於一個且唯一一個聚類。然而客觀世界中大量存在著界限並不分明的聚類問題。模糊聚類擴展了傳統聚類的思想。FCM考慮一個靠近兩個類邊界的對象,它離其中的一個稍微近一些,如果對每一個對象和每一個類賦予一個權值,指明該對象屬於該簇的程度(被稱為隸屬度),通過使用隸屬,使得可以把每一個數據分配給所有的聚類,不同於傳統的聚類方法,模糊聚類的結果使得每個數據最終可能屬於多個聚類,每個數據對每個聚類分配一個隸屬度。聚類的結果可以表示為一個模糊矩陣。實際上,就是為提高聚類的分類效果的一種改進方法。
另外,聚類分析的優勢是通過樹立的角度對數據做智能劃分,免去人工劃分的痛苦。同時,一個對象由若干種不同性質的屬性構成,通過聚類進行分類,為人們做決策提供參考。
❹ 模糊聚類分析方法與聚類分析法有哪些優點
涉及事物之間的模糊界限時按一定要求對事物進行分類的數學方法。聚類分析是數理統計中的一種多元分析 模糊聚類分析方法,它是用數學方法定量地確定樣本的親疏關系,從而客觀地劃分類型。事物之間的界限,有些是確切的,有些則是模糊的。例如人群中的面貌相像程度之間的界限是模糊的,天氣陰、晴之間的界限也是模糊的。當聚類涉及事物之間的模糊界限時,需運用模糊聚類分析方法。模糊聚類分析廣泛應用在氣象預報、地質、農業、林業等方面。通常把被聚類的事物稱為樣本,將被聚類的一組事物稱為樣本集。模糊聚類分析有兩種基本方法:系統聚類法和逐步聚類法。
❺ 模糊聚類分析法和聚類分析法有什麼區別,還有一種動態模糊分析法,它比模糊分析法有什麼樣的改進。
模糊聚類分析是聚類分析的一種。聚類分析按照不同的分類標准可以進行不同的分類。就好像人按照性別可以分成男人和女人,按照年齡可以分為老中青一樣。聚類分析如果按照隸屬度的取值范圍可以分為兩類,一類叫硬聚類演算法,另一類就是模糊聚類演算法。隸屬度的概念是從模糊集理論里引申出來的。傳統硬聚類演算法隸屬度只有兩個值 0 和 1。 也就是說一個樣本只能完全屬於某一個類或者完全不屬於某一個類。舉個例子,把溫度分為兩類,大於10度為熱,小於或者等於10度為冷,這就是典型的「硬隸屬度」概念。 那麼不論是5度 還是負100度都屬於冷這個類,而不屬於熱這個類的。而模糊集里的隸屬度是一個取值在[0 1]區間內的數。一個樣本同時屬於所有的類,但是通過隸屬度的大小來區分其差異。比如5度,可能屬於冷這類的隸屬度值為0.7,而屬於熱這個類的值為0.3。這樣做就比較合理,硬聚類也可以看做模糊聚類的一個特例。你說的動態模糊分析法我在文獻里很少見到好像並不主流,似乎沒有專門的這樣一種典型聚類演算法,可能是個別人根據自己需要設計並命名的一種針對模糊聚類的改進方法,這個不好說了就。我見過有把每個不同樣本加權的,權值自己確定,這樣就冠以「動態"二字,這都是作者自己起的。也有別的也叫」動態「的,可能也不一樣,似乎都是個別人自己提出的。至於文獻,你可以到中國知網搜索博士或者碩士畢業論文,有關模糊聚類為題目的,在第一章引言裡面必然會有詳細的介紹,或者聯系我,我就是做這方面的。希望能對你有所幫助,給點分吧,打的挺累的。
❻ 《基於模糊聚類分析在大數據處理上的應用》 畢業論文題目、求大神指點一二,從什麼點突破比較好
在動筆之前要做好充分的准備,一旦下筆之後,則要堅持不懈地一口氣寫下去,務必在最短時間內拿出初稿。這是許多文章家的寫作訣竅。有的人寫文章喜歡咬文嚼字,邊寫邊琢磨詞句,遇到想不起的字也要停下來查半天字典。這樣寫法,很容易把思路打斷。其實,初稿不妨粗一些,材料或文字方面存在某些缺陷,只要無關大局。暫時不必去改動它,等到全部初稿寫成後,再來加工不遲。魯迅就是這樣做的,他在《致葉紫》的信中說:
先前那樣十步九回頭的作文法,是很不對的,這就是在不斷的不相信自己——結果一定做不成。以後應該立定格局之後,一直寫下去,不管修辭,也不要回頭看。等到成後,擱它幾天,然後再來復看,刪去若干,改換幾字。在創作的途中,一面煉字,真要把感興打斷的。我翻譯時,倘想不到適當的字,就把這些字空起來,仍舊譯下去,這字待稍暇時再想。
否則,能因為一個字,停到大半天。這是魯迅的經驗之談,對我們寫畢業論文也極有啟發。
❼ MATLAB基於模糊聚類分析方法
function Z=hecheng(X,X)
[m,m]=size(X);z=zeros(m,m);p4=zeros(1,m);
for i=1:m
for j=1:m
for k=1:m
p4(1,k)=min(X(i,k),Y(k,j));
end
Z(i,j)=max(p4);
end
end
應該能用!
❽ 您好,看過你的百度回答,感覺您是個統計方法方面的專家,請教你個問題,模糊聚類分析能用spss做嗎
能啊
看看這本書spss全解
做建模挺有用的