貝葉斯在股票投資中的應用
1. 貝葉斯定理的定理應用
貝葉斯定理用於投資決策分析是在已知相關項目B的資料,而缺乏論證項目A的直接資料時,通過對B項目的有關狀態及發生概率分析推導A項目的狀態及發生概率。如果我們用數學語言描繪,即當已知事件Bi的概率P(Bi)和事件Bi已發生條件下事件A的概率P(A│Bi),則可運用貝葉斯定理計算出在事件A發生條件下事件Bi的概率P(Bi│A)。按貝葉斯定理進行投資決策的基本步驟是:
1 列出在已知項目B條件下項目A的發生概率,即將P(A│B)轉換為 P(B│A);
2 繪制樹型圖;
3 求各狀態結點的期望收益值,並將結果填入樹型圖;
4 根據對樹型圖的分析,進行投資項目決策;
搜索巨人Google和Autonomy,一家出售信息恢復工具的公司,都使用了貝葉斯定理(Bayesian principles)為數據搜索提供近似的(但是技術上不確切)結果。研究人員還使用貝葉斯模型來判斷症狀和疾病之間的相互關系,創建個人機器人,開發能夠根據數據和經驗來決定行動的人工智慧設備。
2. 貝葉斯法則有什麼具體應用
貝葉斯法則,是指當分析樣本大到接近總體數時,樣本中事件發生的概率將接近於總體中事件發生的概率。
網路里有,你自己查吧
3. 貝葉斯定理厲害在哪裡有哪些驚為天人的應用
比如,天氣預報說,明天降雨的概率是30%。這是什麼意思呢?因為我們無法像計算頻率概率那樣,重復地把明天過上100次,然後計算出大約有30次會下雨,所以只能利用有限的信息(過去天氣的測量數據),採用貝葉斯定理來預測出明天下雨的概率是多少。同樣的,在現實世界中,我們每個人都需要預測。要想深入分析未來、思考是否買股票、政策給自己帶來哪些機遇、提出新產品構想,或者只是計劃一周的飯菜。貝葉斯定理就是為了解決這些問題而誕生的,它可以根據過去的數據來預測出概率。貝葉斯定理的思考方式為我們提供了明顯有效的方法來幫助我們提供能力,以便更好地預測未來的商業、金融、以及日常生活。
4. 怎麼通俗易懂地解釋貝葉斯網路和它的應用
第一步:貝葉斯網路工具箱
第二步:解壓壓縮包
第三步:將工具箱中bnt文件夾復制到matlab工具箱文件夾中(D:\Program Files\MATLAB\R2014a\toolbox)
第四步:打開matlab2014a
貝葉斯網路是處理不確定信息做有效的表示方法之一。其關鍵的特徵之一是提供了把整個概率分布分解成幾個局部分布的方法,網路的拓撲結構表明如何從局部的概率分布獲得完全的聯合概率分布。
貝葉斯網路適合於對領域知識具有一定了解的情況,至少對變數間的依賴關系較清楚。否則直接從數據中學習貝葉斯網路結構復雜性極高(隨節點的增加成指數級增長)
5. 樸素貝葉斯的應用
和決策樹模型相比,樸素貝葉斯分類器(Naive Bayes Classifier,或 NBC)發源於古典數學理論,有著堅實的數學基礎,以及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。
解決這個問題的方法一般是建立一個屬性模型,對於不相互獨立的屬性,把他們單獨處理。例如中文文本分類識別的時候,我們可以建立一個字典來處理一些片語。如果發現特定的問題中存在特殊的模式屬性,那麼就單獨處理。
這樣做也符合貝葉斯概率原理,因為我們把一個片語看作一個單獨的模式,例如英文文本處理一些長度不等的單詞,也都作為單獨獨立的模式進行處理,這是自然語言與其他分類識別問題的不同點。
實際計算先驗概率時候,因為這些模式都是作為概率被程序計算,而不是自然語言被人來理解,所以結果是一樣的。
在屬性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。但這點有待驗證,因為具體的問題不同,演算法得出的結果不同,同一個演算法對於同一個問題,只要模式發生變化,也存在不同的識別性能。這點在很多國外論文中已經得到公認,在機器學習一書中也提到過演算法對於屬性的識別情況決定於很多因素,例如訓練樣本和測試樣本的比例影響演算法的性能。
決策樹對於文本分類識別,要看具體情況。在屬性相關性較小時,NBC模型的性能稍微良好。屬性相關性較小的時候,其他的演算法性能也很好,這是由於信息熵理論決定的。
6. 貝葉斯公式在生活中的應用說謊了么'
英語周報外研2015-2016book4-mole 3 答案 Book 4 Mole 3 參考答案及部分解析 參考答案 1-5 CBCAB 6-10ABBCC 11-15 BCACA 16-20ABABA 21-25 AABDB 26-30ADADB 31-35 CACDB 36-40CDGFA 41-45 CABDB 46-50BDABD 51-55 ADABD 56-60ACBAD 61. liv。
7. 貝葉斯公式在人工智慧中的應用是怎麼回事
通過貝葉斯公式計算出先驗概率,再計算出後驗概率,再將它們的乘積最大似然,得到的就是最近的答案。
8. 有人能指導一下貝葉斯公式的實際應用嗎
用MLE(似然函數)和先驗概率來測算MAP(後驗概率),屬於一種generative model(生成模型),其優點在於計算速度快以及對數據缺失的魯棒性。
9. 貝葉斯原理及應用
貝葉斯決策理論是主觀貝葉斯派歸納理論的重要組成部分。貝葉斯決策就是在不完全情報下,對部分未知的狀態用主觀概率估計,然後用貝葉斯公式對發生概率進行修正,最後再利用期望值和修正概率做出最優決策。貝葉斯決策理論方法是統計模型決策中的一個基本方法,其基本思想是:1、已知類條件概率密度參數表達式和先驗概率。2、利用貝葉斯公式轉換成後驗概率。3、根據後驗概率大小進行決策分類。他對統計推理的主要貢獻是使用了"逆概率"這個概念,並把它作為一種普遍的推理方法提出來。貝葉斯定理原本是概率論中的一個定理,這一定理可用一個數學公式來表達,這個公式就是著名的貝葉斯公式。 貝葉斯公式是他在1763年提出來的:假定B1,B2,……是某個過程的若干可能的前提,則P(Bi)是人們事先對各前提條件出現可能性大小的估計,稱之為先驗概率。如果這個過程得到了一個結果A,那麼貝葉斯公式提供了我們根據A的出現而對前提條件做出新評價的方法。P(Bi∣A)既是對以A為前提下Bi的出現概率的重新認識,稱 P(Bi∣A)為後驗概率。經過多年的發展與完善,貝葉斯公式以及由此發展起來的一整套理論與方法,已經成為概率統計中的一個冠以「貝葉斯」名字的學派,在自然科學及國民經濟的許多領域中有著廣泛應用。公式:設D1,D2,……,Dn為樣本空間S的一個劃分,如果以P(Di)表示事件Di發生的概率,且P(Di)>0(i=1,2,…,n)。對於任一事件x,P(x)>0,則有: nP(Dj/x)=p(x/Dj)P(Dj)/∑P(X/Di)P(Di)i=1( http://wiki.mbalib.com/w/images/math/9/9/b/.png)貝葉斯預測模型在礦物含量預測中的應用 貝葉斯預測模型在氣溫變化預測中的應用 貝葉斯學習原理及其在預測未來地震危險中的應用 基於稀疏貝葉斯分類器的汽車車型識別 信號估計中的貝葉斯方法及應用 貝葉斯神經網路在生物序列分析中的應用 基於貝葉斯網路的海上目標識別 貝葉斯原理在發動機標定中的應用 貝葉斯法在繼電器可靠性評估中的應用 相關書籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》 Springer 《貝葉斯決策》 黃曉榕 《經濟信息價格評估以及貝葉斯方法的應用》 張麗 , 閆善文 , 劉亞東 《全概率公式與貝葉斯公式的應用及推廣》 周麗琴 《貝葉斯均衡的應用》 王輝 , 張劍飛 , 王雙成 《基於預測能力的貝葉斯網路結構學習》 張旭東 , 陳鋒 , 高雋 , 方廷健 《稀疏貝葉斯及其在時間序列預測中的應用》 鄒林全 《貝葉斯方法在會計決策中的應用》 周麗華 《市場預測中的貝葉斯公式應用》 夏敏軼 , 張焱 《貝葉斯公式在風險決策中的應用》 臧玉衛 , 王萍 , 吳育華 《貝葉斯網路在股指期貨風險預警中的應用》 黨佳瑞 , 胡杉杉 , 藍伯雄 《基於貝葉斯決策方法的證券歷史數據有效性分析》 肖玉山 , 王海東 《無偏預測理論在經驗貝葉斯分析中的應用》 嚴惠雲 , 師義民 《Linex損失下股票投資的貝葉斯預測》 卜祥志 , 王紹綿 , 陳文斌 , 余貽鑫 , 岳順民 《貝葉斯拍賣定價方法在配電市場定價中的應用》 劉嘉焜 , 范貽昌 , 劉波 《分整模型在商品價格預測中的應用》 《Bayes方法在經營決策中的應用》 《決策有用性的信息觀》 《統計預測和決策課件》 《貝葉斯經濟時間序列預測模型及其應用研究》 《貝葉斯統計推斷》 《決策分析理論與實務》