從量化面對股票市場進行論述分析
㈠ 量化投資到底是什麼鬼,未來將顛覆中國股票市場
量化投資在一定程度上已經被別有用心地神話或者說標簽化了,就像當下風頭正勁的「互聯網金融」一樣,很多時候都被包裝成了看似「高端大氣」、且可能「一夜暴富」的賣點或者噱頭。追根溯源,其實量化就是指運用數學或者統計模型來模擬金融市場的未來走向,從而預估金融產品的潛在收益。在前文中,我們還曾提到多個數字,如平均年收益率、年回報率、年盈利率,這些其實都表徵同一個量化指標,即「年化收益率」。它是指投資者在一年的投資期限內所能獲得收益比例,專門用於評估投資行為或金融產品的好壞優劣。 那麼,究竟多高的年化收益率才能給投資者帶來豐厚的投資回報?為了更加清楚的分析這個問題,我們不妨舉個例子。
比如某位名叫「G」的投資者,在1990年時持有3.8萬的啟動資金,如果其所認購產品的平均年化收益率是60%,那麼經過25年,到2015年,「G」將會擁有40億,但如果其所購產品的平均年化收益率上漲15%(到75%),那麼25年後,「G」的資產將會是40億後再加個零,變成400個億。百億身價竟僅僅始於3.8萬?這種堪比原子彈爆炸的財富增長若僅僅用「回報豐厚」來形容,會不會未免有些太吝嗇了?我並不十分相信那些投行精英們會如此慷慨無私,讓投資者只需在家坐著就能穩收百億回報,所以如果今後有人向我推薦金融產品,而且宣稱年化收益率可以有60%,我肯定得思量思量,自己是不是真的運氣那麼好,這輩子可以被錢砸暈?畢竟像文藝復興公司的傳奇也像「文藝復興」一樣,雖然能被歷史銘記,但卻難以被時代復制。
㈡ 什麼是量化分析
量化分析就是分析數據化 混沌理論 :「相對論消除了關於絕對空間和時間的幻想;量子力學則消除了關於可控測量過程的牛頓式的夢;而混沌則消除了拉普拉斯關於決定論式可預測的幻想。」 一點就是未來無法確定。如果你某一天確定了,那是你撞上了。 第二事物的發展是通過自我相似的秩序來實現的。看見雲彩,知道他是雲彩,看見一座山,就知道是一座山,憑什麼?就是自我相似。這是混沌理論兩個基本的概念。 混沌理論還有一個是發展人格,他有三個原則,: 1、能量永遠會遵循阻力最小的途徑 2、始終存在著通常不可見的根本結構,這個結構決定阻力最小的途徑。 3、這種始終存在而通常不可見的根本結構,不僅可以被發現,而且可以被改變。 一、混沌理論(Chaos theory)是一種兼具質性思考與量化分析的方法,用以探討動態系統中(如:人口移動、化學反應、氣象變化、社會行為等)無法用單一的數據關系,而必須用整體、連續的數據關系才能加以解釋及預測之行為。 二、混沌一詞原指宇宙未形成之前的混亂狀態,我國及古希臘哲學家對於宇宙之源起即持混沌論,主張宇宙是由混沌之初逐漸形成現今有條不紊的世界。在井然有序的宇宙中,西方自然科學家經過長期的探討,逐一發現眾多自然界中的規律,如大家耳熟能詳的地心引力、杠桿原理、相對論等。這些自然規律都能用單一的數學公式加以描述,並可以依據此公式准確預測物體的行徑。 三、近半世紀以來,科學家發現許多自然現象即使可化為單純的數學公式,但是其行徑卻無法加以預測。如氣象學家Edward Lorenz發現,簡單的熱對流現象居然能引起令人無法想像的氣象變化,產生所謂的「蝴蝶效應」,亦即某地下大雪,經追根究底卻發現是受到幾個月前遠在異地的蝴蝶拍打翅膀產生氣流所造成的。一九六○年代,美國數學家Stephen Smale 發現,某些物體的行徑經過某種規則性的變化之後,隨後的發展並無一定的軌跡可尋,呈現失序的混沌狀態。 四、混沌現象起因於物體不斷以某種規則復制 前一階段的運動狀態,而產生無法預測的隨機效果。所謂「差之毫釐,失之千里」正是此一現象的最佳批註。具體而言,混沌現象發生於易變動的物體或系統,該物體在行動之初極為單純,但經過一定規則的連續變動之後,卻產生始料所未及的後果,也就是混沌狀態。但是此種混沌狀態不同於一般雜亂無章的的混亂狀況,此一混沌現象經過長期及完整分析之後,可以從中理出某種規則出來。混沌現象雖然最先用於解釋自然界,但是在人文及社會領域中因為事物之間相互牽引,混沌現象尤為多見。如股票市場的起伏、人生的平坦曲折、教育的復雜過程。 五、混沌理論在教育行政、課程與教學、教育研究、教育測驗等方面已經有些許應用的例子。由於教育的對象是人,人是隨時變動起伏的個體,而教育的過程基本上依循一定的准則,並歷經長期的互動,因此,相當符合混沌理論的架構。也因此,依據混沌理論,教育系統容易產生無法預期的結果。此一結果可能是正面的,也有可能是負面的。不論是正面或是負面的,重要的是,教育的成效或教育的研究除了短期的觀察之外,更應該累積長期數據,從中分析出可能的脈絡出來,以增加教育效果的可預測性,並運用其擴大教育效果。
㈢ 量化分析的量化投資策略
量化投資技術幾乎覆蓋了投資的全過程,包括量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、演算法交易,資產配置,風險控制等。
1·量化選股
量化選股就是採用數量的方法判斷某個公司是否值得買入的行為。根據某個方法,如果該公司滿足了該方法的條件,則放入股票池,如果不滿足,則從股票池中剔除。量化選股的方法有很多種,總的來說,可以分為公司估值法、趨勢法和資金法三大類
2·量化擇時
股市的可預測性問題與有效市場假說密切相關。如果有效市場理論或有效市場假說成立,股票價格充分反映了所有相關的信息,價格變化服從隨機遊走,股票價格的預測則毫無意義。眾多的研究發現我國股市的指數收益中,存在經典線性相關之外的非線性相關,從而拒絕了隨機遊走的假設,指出股價的波動不是完全隨機的,它貌似隨機、雜亂,但在其復雜表面的背後,卻隱藏著確定性的機制,因此存在可預測成分。
3·股指期貨套利
股指期貨套利是指利用股指期貨市場存在的不合理價格,同時參與股指期貨與股票現貨市場交易,或者同時進行不同期限,不同(但相近)類別股票指數合約交易,以賺取差價的行為,股指期貨套利主要分為期現套利和跨期套利兩種。股指期貨套利的研究主要包括現貨構建、套利定價、保證金管理、沖擊成本、成分股調整等內容。
4·商品期貨套利
商品期貨套利盈利的邏輯原理是基於以下幾個方面 :(1)相關商品在不同地點、不同時間對應都有一個合理的價格差價。(2)由於價格的波動性,價格差價經常出現不合理。(3)不合理必然要回到合理。(4)不合理回到合理的這部分價格區間就是盈利區間。
5·統計套利
有別於無風險套利,統計套利是利用證券價格的歷史統計規律進行套利,是一種風險套利,其風險在於這種歷史統計規律在未來一段時間內是否繼續存在。統計套利在方法上可以分為兩類,一類是利用股票的收益率序列建模,目標是在組合的β值等於零的前提下實現alpha 收益,我們稱之為β中性策略;另一類是利用股票的價格序列的協整關系建模,我們稱之為協整策略。
6·期權套利
期權套利交易是指同時買進賣出同一相關期貨但不同敲定價格或不同到期月份的看漲或看跌期權合約,希望在日後對沖交易部位或履約時獲利的交易。期權套利的交易策略和方式多種多樣,是多種相關期權交易的組合,具體包括:水平套利、垂直套利、轉換套利、反向轉換套利、跨式套利、蝶式套利、飛鷹式套利等。
7·演算法交易
演算法交易又被稱為自動交易、黑盒交易或者機器交易,它指的是通過使用計算機程序來發出交易指令。在交易中,程序可以決定的范圍包括交易時間的選擇、交易的價格、甚至可以包括最後需要成交的證券數量。根據各個演算法交易中演算法的主動程度不同,可以把不同演算法交易分為被動型演算法交易、主動型演算法交易、綜合型演算法交易三大類。
8·資產配置
資產配置是指資產類別選擇,投資組合中各類資產的適當配置以及對這些混合資產進行實時管理。量化投資管理將傳統投資組合理論與量化分析技術的結合,極大地豐富了資產配置的內涵,形成了現代資產配置理論的基本框架。它突破了傳統積極型投資和指數型投資的局限,將投資方法建立在對各種資產類股票公開數據的統計分析上,通過比較不同資產類的統計特徵,建立數學模型,進而確定組合資產的配置目標和分配比例。
㈣ 如何量化的衡量股票市場一年的漲跌變化
通過統計不同時間段大盤的漲跌幅來做一些平均之類
㈤ 股票市場的大數據量化分析是怎麼做的
會做的都不會和你說的,簡單來說就是收集數據,實現大數據ai
㈥ 股票如何實現量化交易
採用交易介面介入,文化財經好像有!
㈦ 什麼是量化交易,未來前景如何知道的講講。
國外量化交易已經發展了40年左右,量化交易程序換交易佔比60%,量化基金規模達到30個億美元,而國內量化交易起步較晚第一隻量化基金在2004年左右,至今量化交易規模不過2萬億RMB,國內現在的量化人才也很缺失,隨著過來一批量化交易的海龜回來從事量化交易會一定程度帶動行業的發展,但是仍需一定時間,加上國內量化交易政策還不夠明朗,整體來說量化交易在國內還是一年藍海,但是路途並非坦途。
㈧ 如何理解量化選股和量化擇時之間的關系
所謂量化投資,就是通過定量或統計的方法,不斷地從歷史數據中挖掘有效的規律並在投資行為中加以利用,甚至通過計算機程序自動執行下單的動作。也就是說,量化投資方法是靠「概率」取勝,其最鮮明的特徵就是可定量化描述的模型、規律或策略。
對於股票市場,量化投資主要包括量化選股、量化擇時、演算法交易、股票組合配置、資金或倉位管理、風險控制等。我們這里重點聊一聊量化選股和擇時策略,其中前者解決哪些股票值得關注或持有,後者解決何時買入或賣出這些股票,以期在可承受的風險程度下,獲得盡可能多的收益。
第一階段:選股
選股的目標是從市場上所有可交易的股票中,篩選出適合自己投資風格的、具有一定安全邊際的股票候選集合,通常稱為「股票池」,並可根據自己的操作周期或市場行情變化,不定時地調整該股票池,作為下一階段擇時或調倉的基礎。
量化選股的依據可以是基本面,也可以是技術面,或二者的結合。常用的量化選股模型舉例如下:
1多因子模型
多因子模型:採用一系列的「因子」作為選股標准,滿足這些因子的股票將作為候選放入股票池,否則將被移出股票池。這些因子可以是一些基本面指標,如 PB、PE、EPS 增長率等,也可以是一些技術面指標,如動量、換手率、波動率等,或者是其它指標,如預期收益增長、分析師一致預期變化、宏觀經濟變數等。多因子模型相對來說比較穩定,因為在不同市場條件下,總有一些因子會發生作用。
2板塊輪動模型
板塊輪動模型:一種被稱作風格輪動,它是根據市場風格特徵進行投資,比如有時市場偏好中小盤股,有時偏好大盤股,如果在風格轉換的初期介入,則可以獲得較大的超額收益;另一種被稱作行業輪動,即由於經濟周期的原因,總有一些行業先啟動行情,另有一些(比如處於產業鏈上下游的)行業會跟隨。在經濟周期過程中,依次對這些輪動的行業進行配置,比單純的買入持有策略有更好的效果。
3一致性預期模型
一致性預期模型:指市場上的投資者可能會對某些信息產生一致的看法,比如大多數分析師看好某一隻股票,可能這個股票在未來一段時間會上漲;如果大多數分析師看空某一隻股票,可能這個股票在未來一段時間會下跌。一致性預期策略就是利用大多數分析師的看法來進行股票的買入賣出操作。
與此類似的思路還有基於股吧、論壇、新聞媒體等對特定股票提及的輿情熱度或偏正面/負面的消息等作為依據。還有一種思路是反向操作,迴避羊群效應(物極必反),避免在市場狂熱時落入主力資金出貨的陷阱。
4資金流模型
資金流模型:其基本思想是根據主力資金的流向來判斷股票的漲跌,如果資金持續流入,則股票應該會上漲,如果資金持續流出,則股票應該下跌。所以可將資金流入流出情況編製成指標,利用該指標來預測未來一段時間內股票的漲跌情況,作為選股依據。
第二階段:擇時
擇時的目標是確定股票的具體買賣時機,其依據主要是技術面。取決於投資周期或風格(例如中長線、短線,或超短線),擇時策略可以從比較粗略的對股票價位相對高低位置的判斷,到依據更精確的技術指標或事件消息等作為信號來觸發交易動作。
一般來說,擇時動作的產生可以基於日K線(或周K線),也可以基於日內的小時或分鍾級別K線,甚至tick級的分時圖等。具體的量化擇時策略可以分為如下幾種:
1趨勢跟蹤型
趨勢跟蹤型策略適用於單邊上升或單邊下降(如果可做空的話)的行情——當大盤或個股出現一定程度的上漲和一定程度的下跌,則認為價格走勢會進一步上漲或下跌而做出相應操作(買入->持有->加倉->繼續持有->賣出)。
2高拋低吸型
高拋低吸型:高拋低吸型策略適用於震盪行情——當價格走勢在一定范圍的交易區間(箱形整理)或價格通道(平行上升或下降通道)的上下軌之間波動時,反復地在下軌附近買入,在上軌附近賣出,賺取波段差價利潤(下軌買入->上軌賣出->下軌買入->上軌賣出->…)。
3橫盤突破型
橫盤突破型:價格走勢可能在一定區間范圍內長時間震盪,總有一天或某一時刻走出該區間,或者向上突破價格上軌(如吸籌階段結束開始拉升),或者向下突破價格下軌(如主力出貨完畢,或向下一目標價位跌落以尋找有效支撐),此時行情走勢變得明朗。
橫盤突破型策略就是要抓住這一突破時機果斷開多或開空,以期用最有利價位和最小風險入場,獲得後續利潤(空倉或持倉等待機會->突破上軌則買入或平空/突破下軌則賣出或做空)。
常見的趨勢跟蹤型策略有:短時和長時移動均線交叉策略,均線多頭排列和空頭排列入場出場策略,MACD的DIFF和DEA線交叉策略等。如下圖所示:
常見的高拋低吸型策略一般通過震盪類技術指標,如KDJ、RSI、CCI等,來判斷價格走勢的超賣或超賣狀態,或通過MACD紅綠柱或量能指標與價格走勢間的背離現象,來預測波動區間拐點的出現。如下圖所示:
常見的橫盤突破策略包括布林帶上下軌突破、高低價通道突破、Hans-123、四周法則等。如下圖所示:
必須要強調的是,趨勢跟蹤型策略和高拋低吸型策略適用於完全不同的市場行情階段——如果在單邊趨勢中做高拋低吸,或是在震盪行情中做趨勢跟蹤,則可能會造成很大虧損。因此,對這二者的使用,最關鍵的是,第一要盡量准確地判斷當前行情類型,第二是要時刻做好止損保護(和及時止盈)。
總結一下:
在瘋牛秘籍和瘋牛形態系列產品中,提供了大量對股市規律的揭示、以及基於這些規律制定的量化策略,例如基於各類公告事件、資金動向、技術指標等制定的策略和規律,以及次日機會、底部形態反轉等對應的交易時機。
這些實時動態的策略可為投資者的選股和擇時操作提供高效的、有價值的參考。
㈨ 股票市場中什麼 是量化投資!
微量網:量化投資在海外的發展已有30多年的歷史,其投資業績穩定,市場規模和份額不斷擴大、得到了越來越多投資者認可。
量化投資區別於定性投資的鮮明特徵就是模型,對於量化投資中模型與人的關系,大家也比較關心。我打個比方來說明這種關系,我們先看一看醫生治病,中醫與西醫的診療方法不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,定性程度上大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。
醫生治療病人的疾病,投資者治療市場的疾病,市場的疾病是什麼?就是錯誤定價和估值,沒病或病得比較輕,市場是有效或弱有效的;病得越嚴重,市場越無效。投資者用資金投資於低估的證券,直到把它的價格抬升到合理的價格水平上。
但是,定性投資和定量投資的具體做法有些差異,這些差異如同中醫和西醫的差異,定性投資更像中醫,更多地依靠經驗和感覺判斷病在哪裡;定量投資更像是西醫,依靠模型判斷,模型對於定量投資基金經理的作用就像CT機對於醫生的作用。在每一天的投資運作之前,我會先用模型對整個市場進行一次全面的檢查和掃描,然後根據檢查和掃描結果做出投資決策。
量化投資技術幾乎覆蓋了投資的全過程,包括量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、演算法交易,資產配置,風險控制等。