當前位置:首頁 » 市值市價 » 股票市場反饋效應

股票市場反饋效應

發布時間: 2021-04-26 17:17:21

❶ 什麼是股票的28效應

28效應:
股市常說的二八效應其實就是指有兩成股票在漲或是跌,而同時又有八成股票在跌或者漲。
簡介:
二八現象是這兩年來的不正常的股市現象,機構為了做市,猛拉大盤指標股,結果是20%的指標股漲,大盤指數漲了,80%的股票不漲還下跌。
如果二八現象要繼續走下去,就意味著牛市已經結束,熊市已經來臨,而且,這樣的"二八"現象也是暫時的,最終那些強勢的少數股票也會象當初德隆的股票一樣被市場拋棄。

❷ 反饋效應的經濟學解釋

如果信息的反饋使國際物流系統的運動得以發展,增加效益,稱之為正反饋。雖然政策導向希望居民將資金留在銀行,或者分流至海外市場,但目前來看,還看不到居民對此的積極響應。居民資金不斷流向公募基金,使得A股市場在「正反饋」效應下節節看漲。誠然,市場估值已不低,但在資產注入和股權激勵的背景下,相信持續高速的成長性完全有能力化解估值憂慮。
1.資金推動下的「正反饋」效應
加息利空來襲,股市卻不為所動,前期持續上漲之後,金融服務、有色金屬、煤炭等板塊絲毫不顯疲態,而房地產指數在調控政策風雨欲來之際依然強勢創出新高。
與此同時也發現,在絕對價值的標桿漸漸模糊之際,相對價值的意義開始勝出。繼估值最低的鋼鐵板塊暴發後,高速公路、造紙等估值相對較低的板塊也被發掘出來,而像信息設備、信息服務、食品飲料等估值一直偏高的板塊,目前來看其估值也不顯得高高在上。
盡管還能從高增長、低資金成本的角度來解釋當前現象,但客觀而言,更傾向於接受的現實是,充裕的流動性已成為推動市場的最主要因素。昨日的一條重要信息是,南方和博時基金管理公司的基金總規模雙雙突破了2000億元,而這顯然是居民儲蓄不斷搬家的結果。在看來,儲蓄搬家是勢不可當之潮流,這一方面是因為居民理財意識的增強,更重要的一方面則是通脹壓力明顯加大,任何一個居民都不得不在趨於縮水的銀行存款和瘋狂但有極大吸引力的股市之間作出選擇。
如此一來,股市上漲的「正反饋」效應就自然形成了:儲蓄資金源源不斷流入基金→出於自身利益,基金被迫建倉→基金偏愛的大盤藍籌股受到爭奪→大盤迭創新高→賺錢效應吸引更多的居民加入基民隊伍。
盡管藍籌股也有些「泡沫化」的傾向,但讓欣慰的是,隨著制度的變革,股權激勵和資產注入正讓上市公司「內外兼修」,基本面展現著翻天覆地的變化。相信,將有更多的國資所屬上市公司積極推動資產注入和整體上市,個中機會不言而喻。
2.人民幣資產堪為「避風港」
海外市場剛剛經歷的「次貸」危機讓才開始跨出國門的QDII產品受到警示,不過,引導資金流向海外卻是當下最為緊迫的任務。於是看到,境內投資者直接投資海外市場的試點又開始推出。實現全球意義上的資產配置離普通投資者越來越近,而也得以接觸海外市場豐富而精彩的投資世界。
盡管持有匯豐這樣的貨真價實的藍籌股已變成現實,但目前看來,對投資海外市場感興趣的內地居民仍將十分有限。且不說內地投資機構與普通投資者對海外市場的陌生,單從人民幣加速升值這一預期而言,將人民幣兌換成外匯本身就是一件頗具風險的事情。出口退稅的屢次調整,也壓抑不了競爭力強勁的中國企業的出口熱情,使得人民幣升值壓力居高不下,在這種情況下,人民幣顯然是更具吸引力的貨幣。
有人看到了A股與H股之間的巨大價差,認為便宜的H股更值得持有。而在看來,雖然同股不同價的現象很不正常,但考慮到非人民幣貨幣潛在的匯兌損失,這一切又都不難理解。如果H股真的很有吸引力的話,那內地居民為什麼還放著折價34%的萬科B股不買呢?始終認為,要想分享人民幣升值的巨大收益,持有人民幣資產是最佳選擇,而即使持有內地企業的港元股票的效果也是大打折扣。
更讓內地市場火上澆油的是,經歷了「次貸」危機後,美聯儲升息預期有所下降,而降息的可能性也不能排除,在這一背景下,利率見漲、升值預期強烈的人民幣似乎正是理想的「避風港」。可以預見,進入內地市場爭奪股票、房地產等人民幣資產的海外資金將更為積極。
證劵市場:
證券市一直是一個正反饋的市場,即市場影響情緒,反過來情緒又影響市場,互為交織,呈現放大作用。這個前階段的上升行情中顯露無疑。比如上市公司的交叉持股,你漲了我的業績好,我業績好了,股價漲,所以你的業績也好,股價也跟著漲。 但是事物往往存在兩面性,上升中的正反饋表現為行情加速上揚,那下跌中的正反饋現像呢,是不是正好相反?
拿基金公司來說,大多數基金公司都在熱衷於做拆分和大比例分紅,看不到有哪點是為用戶著想。只是依用戶喜好來達到增加公司資產管理規模的目的,而不是正確引導投資者。
沒有正確理念的投資者仍然喜歡低凈值基金,這樣可能會導致新發的基金發不出去。因為與其買1元的基金,不如買0.9x元或0.8x元的基金,新基金發不出,意味著進入市場的資金就變少了。這樣行情只會繼續跌,就會出現越來越多低凈值的基金。
所以當出現新基金再無法一天完成募集的時候,說不定就是整個趨勢的轉折點。

❸ 為什麼說股市有財富效應,財富效應的具體體現是什麼

財富效應又稱實際余額效應。實際上正是由於資產的價格波動引起的。本意上,財富效應是為了說明,金融資產價格的波動,導致資產持有人財富的浮動和邊際消費傾向之間的關系的。意在指人們資產越多,消費意欲越強這一規律。

個人認為,中國股市是目前世界上最不理性的股票市場,追漲、跟風買等現象尤為特出,一漲就滿天紅!這也很好解釋,股民賺錢了,就想消費,大部分不是消費在物質市場,而是仍然迴流到股市繼續購買股票(這里也可以把股票看成商品吧),而這恰恰是反映了:資產增加--消費這一財富效應。其實本人不贊成股市財富效應這樣的說法,一是因為定義有點混淆,二是沒有實際意義。可能這樣說的人有點諷刺的含義在裡面吧!

❹ 股票市場與馬太效應,什麼是股票市場中的馬太效應

馬太效應就是兩極分化,好的越好,壞的越壞。反映到股市裡那就是在一段時間內,市場認可的股票飛速上漲,而其他股票表現平平。投資者應踏准股市和個股的趨勢。

❺ 股票市場的周末效應是什麼意思

一般指大家會在周五的時候預測周末兩天政策面會出現什麼變化而做出的買入或賣出股票的舉動,這個時候,在周五收盤之前可能會出現比較大的上漲(預期好)或下跌(預期不好).

❻ 正螺旋效應是怎麼產生的

滬深A股市場價格混沌特性研究
Study on Chaos process of stock price in Shanghai and Shenzhen A shares Stock market

研究領域: 金融學

1、前言
現代金融經濟學理論假定投資者是理性的,證券價格等於其內在「基本價值」,在這種理想的市場環境中,市場是有效率的。Fama(1970)提出有效市場假說(Efficient Market Hypothesis,EMH),認為在一個有效率的市場中,證券的價格充分反映了所有可獲得的信息。為了檢驗市場是否有效,所採用的方法一般是通過檢驗證券價格收益率序列是否符合隨機遊走模型。關於市場效率的實證研究持續了近半個世紀,但結論仍然是存在極大爭議的。
自然科學的研究成果表明,一個非線性正反饋系統的演化過程可能產生混沌(Chaos)。許多經濟行為模式都是非線性的,例如,投資者對風險與收益的偏好、市場參與者之間的決策博弈、一些經濟合同及金融工具的選擇性條款等。行為金融學派認為,投資者並非完全理性的,而是存在「代表性直覺(Representativeness heuristic)」等認知偏差(Kahneman 與 Tversky,1979),在這些認知偏差影響下,由於羊群效應(Scharfstein 與 Stein,1990)、外推預期等因素,證券市場存在正反饋機制(De Long等,1990b)。因此,證券價格形成過程中,存在非線性正反饋機制, 在這種機制的驅動下,證券價格有可能出現混沌(Chaos)現象,使證券價格的演變表現出復雜性(Complexity)。
混沌概念是E.Lorenz(1963)最早在研究大氣運動時提出的,它是指確定性系統的內在不規則的、永不重復的非周期性運動,這種系統存在內在非線性正反饋動力,其定常狀態是一種性態復雜、紊亂但卻使終有限的運動狀態,且系統的運動路徑受系統初始條件及參數影響很大。混沌表面上看起來像隨機運動,它能通過所有傳統的隨機性檢驗,例如,在許多計算機系統中,類似於Logistic映射這樣的混沌過程演算法就被作為偽隨機數發生器(Pseudo Random Number Generators)產生隨機數序列。混沌貌似隨機性(Randomness),但它不是隨機性。隨機性是隨機過程,是雜訊擾動引起的。而混沌則是由內在確定性的非線性正反饋引起的,因此也被稱為確定性混沌(Deterministic Chaos)。
混沌的概念提出以後,對現代金融經濟學中有效市場理論的沖擊是巨大的。Fama(1970)通過檢驗證券價格收益率序列在統計上能通過隨機行走模型檢驗,從而認為市場是有效的。但是,如果證券價格收益率序列存在確定性混沌過程,它在數學上也完全能夠通過所有隨機性檢驗,但它卻不是隨機運動,而是受內部確定性過程驅動,這樣,傳統金融經濟學有效市場理論的基礎將變得十分脆弱。
本文將簡要回顧混沌理論的研究成果及其在金融市場研究中的應用,並對滬深A股市場價格的混沌特性進行實證研究。本文的研究表明,滬深A股市場存在低維確定性過程。
本文餘下部分安排如下,第二部分是對混沌理論及相關研究成果進行簡要回顧,第三部分對滬深A股市場股票價格混沌特性進行實證研究,第四部分是全文的總結。

2、混沌理論及證券價格的混沌特性
Lorenz(1963)在研究氣象預測時發現,大氣運動這樣的復雜系統存在混沌過程,在一定的條件下,系統運動的軌跡將是圍繞兩個不動點(即奇異吸引子,Strange Attractor)的發散的螺旋,並局限在一個有界的、體積為零的曲面上,進行不斷無規則的振盪。這種不規則的來回振盪,好像飛蛾看到兩個光源,飛向一個光源,當靠近時感到太熱又飛向另一光源,如此不規則地來回飛騰,其飛行的軌跡永不重復。由於它的形狀類似蝴蝶的雙翼,所以也被稱為Lorenz蝴蝶結,如圖1所示。

圖1 Lorenz 蝴蝶結
周期運動或周期性振盪是大量存在的,但上述Lorenz過程是非周期振盪,好像永不結束的過程,然而它既不發散也不消失,一直是不規則的振盪。這種振盪的軌跡在三維相空間上是螺旋線,非常密集的曲線在無窮多層平面上呈分形結構(Fractal Structure,參見Mandelbrot, 1985),無窮長,且對初始條件敏感,初始條件中無足輕重的誤差能夠被系統迅速放大,導致系統的演變路徑大相徑庭。正如Lorenz 所指出的那樣:「巴西一隻蝴蝶的扇動可以引發得克薩斯洲的颶風」,即所謂「蝴蝶效應(Butterfly Effect)」。
混沌是作為確定性過程與隨機性過程的橋梁,確定性過程是完全可預測的,而隨機性過程則是完全不可預測的,而混沌過程則是界於確定性過程與隨機性過程之間。由於混沌過程對初始條件敏感,初始細微的誤差可以成倍地放大,因此,對於長期來看,系統的演變是不可預測的。但是,如果初始條件保持穩定,運用混沌過程對系統的短期演化狀態進行預測,得到的結果將比採用線性隨機過程可能得到的預測結果精確得多,因此,混沌過程對經濟分析與預測的意義是明顯的。這可以解釋為什麼傳統經典金融理論認為奉行圖表分析的技術分析是無意義的,但在金融市場仍然存在為數眾多的投資者採用技術圖表分析,追隨證券價格趨勢(Murphy, 1986),而且這些交易者並不像傳統理論所認為的那樣,在與理性交易者長期博弈過程中,這些交易者將因遭受虧損而被趕出市場。
在行為金融學分析框架下,由於證券市場投資者並非完全是古典意義上的理性經濟人,投資者存在認知偏差,對同一事件不同投資者具有不同的價值判斷,從而表現出不同的決策行為。事實上,按照Kahneman 與 Tversky(1974,1979)提出的前景理論(Prospect Theory),各類投資者的風險偏好並不是固定不變的,存在風險偏好的反轉。投資者的價值函數是根據參考點進行定義的,在贏利時是凹函數,在虧損時是凸函數,即在贏利時是風險厭惡型的,而在虧損時是風險追求型的,而且在虧損區間比在贏利區間更陡峭,人們對虧損比對贏利更加敏感。
此外,在前景理論中,投資者權重函數也是非線性的。在極端低概率及極端高概率處,權重函數都存在跳躍,某一事件如果其發生的概率極端地高,明顯地接近於1,則決策者在編輯階段將明確地將其視為確定性的事件,相反,如果某一事件發生的概率極端地小,接近於零,則決策者在編輯階段可能就將其忽略。因此,人們傾向於對那些極端不可能的事件或者忽略或者高估,而對於一些極端高概率的事件則或者忽視或者誇大。
投資者在決策時存在保守主義(Edwards, W., 1968),不會輕易對新收到的信息做出反應,除非人們確信得到足夠的信息表明環境已經改變。而且投資者的行為模式一般是當環境的變化已經達到一定閥值以後,才一起對所有的信息集中做出反應。例如,對理性投資者來說,其對證券的需求並不完全與證券價格偏離基礎價值的程度呈線性關系。在投資實務中,證券分析師與投資經理會經常設定一個他們認為安全的價格線, 價格在此安全價格線以上, 他將進一步等待, 而一旦價格低於這一預先判定的價格時, 他們將迅速大量買入。例如,價值投資理論的創立者本傑明•格拉厄姆(Benjamin Graham)特別強調投資的安全邊際(Safety Margin),只有投資者的預期收益達到一定程度以上時,才會建議買入證券。
總之,在證券市場,由於雜訊交易者的存在、從眾心理及羊群效應等產生的群體性非理性行為可能形成正反饋效應,這種正反饋機制會使證券價格的演變產生十分復雜的運動,在一定條件下產生混沌過程,導致證券價格收益率分布呈現分形等復雜結構,表現出高度的復雜性。例如,價格的突然大幅度波動則導致分布產生胖尾現象,而混沌及局部奇異吸引子的出現,導致證券價格膠著於一些價格附近,來回進行無規則的反復振盪,則使證券價格分布出現局部尖峰的特徵。
現實市場中的非線性特性將進一步增加證券價格形成的復雜程度,使市場交易在本質上變成一種不同投資者之間的多輪博弈。由於證券價格的演變可能形成混沌過程,系統的初始狀態對證券價格的演變路徑影響很大,初始狀態細微的差別將導致長期結果的巨大差別,即所謂「失之毫釐,謬以千里」的蝴蝶效應。因此,就長時間跨度來說,證券價格波動的方向及波動的幅度都是難於預測的。股票價格的波動形式既可以呈現出穩定的均衡(即通常所說的「盤整」),也可以是非周期性的振盪,還可以突然出現暴發性上漲(泡沫)或者大幅度下跌(泡沫破滅或者負泡沫)等劇烈波動,局部可能與整體相似,但永不重復且不可逆轉,呈現分形等復雜且不規則的分形結構,表現出高度的復雜性。混沌過程所擁有的「蝴蝶效應」還可以解釋一些偶然性局部事件所引發的全球性金融市場異常波動,例如,上世紀90年代初的「墨西哥金融危機」及90年代後期的東南亞金融危機等。如果證券價格存在混沌特性,則意味著證券價格變化在短期內存在一定的可預測性,而進行長期預測則是極為困難的,從投資策略角度看,這意味著基於證券價格短期變化的交易者可能存在生存的空間。
在實證研究方面,Fama 1970年提出有效市場假說以後,關於資本市場效率的實證研究不勝枚舉,大量經驗研究表明,證券價格收益率分布不是高斯分布,具有尖峰與胖尾的特點,經常產生一些極端數值,而且,按不同的時間間隔建立收益率分布曲線,得到的都具有相似的尖峰與胖尾的特徵,具有時間分形的特徵。Mandelbrot(1972)提出重標極差分析法(Rescaled Range Analysis, R/S分析方法)以後,許多學者運用R/S方法研究了股票市場效率及檢驗股票市場價格是否存在記憶特性。這方面的文獻包括:Peters(1989,1991,1996),Lo(1991), Pandey,Kohers與Kohers(1998)等。這些經驗研究結果顯示,金融數據具有長期記憶的特徵,即是說,股票當前價格運動受到以前的價格運動的影響。這意味著股票價格存在一定時間區間內的趨勢持續效應,這也在一定程度上印證了股票價格形成過程中存在正反饋效應。
Lorenz(1963)提出混沌理論以後,Grassberger and Procaccia(1983a)提出了關聯維數(Correlation Dimension)的分析方法,用以識別時間序列是否存在低維確定性過程。Scheinkman 與Lebaron(1989)根據美國證券價格研究中心(CRSP)提供的以市值為權重的美國股票收益率指數,對始於1960年代初期的共1226個周收益率數據考察了其關聯維數(Correlation Dimension, CD), 他們研究得到CD值為6,從而認為美國股票周收益率序列總體表現出了非線性關聯,並認為這種非線性關聯可以解釋金融資產分布的尖峰、胖尾等特性。Brock與Back(1991)再度擴展了Scheinkman 與LeBaron的研究,得到的CD值在7-9之間,因此,也拒絕了股票價格收益率是獨立同分布(Independent Identical Distribution,IID)的假設,傾向於支持股價收益率分布存在低維確定性過程的備擇假設,但他們同時指出,並不能就此認為存在混沌過程。Urrutia等(2002)的研究則提出了針鋒相對觀點,他們研究了1984年至1998年期間美國保險公司股票收益率特性,研究表明保險公司股票收益率存在非線性特徵,並且進一步驗證導致這種非線性的原因就是低維混沌過程。總體而言,這些經驗研究提供了實質性的證據表明,股票、匯率、商品期貨等金融數據序列存在非線性結構,但就是否明確存在低維確定性混沌過程,則結論不完全一致,仍然存在爭論。
對於中國大陸股票市場,戴國強等(1999)對上證綜合指數及深證成份指數進行R/S分析,計算得到Hurst指數分別為0.661和0.643;史永東(2000)所作的R/S分析顯示,上海證券交易所股票市場的Hurst指數為0.687,而深圳證券交易所股票市場的Hurst指數為0.667;曹宏鐸等(2003)計算的深證證券交易所股票市場日收益率、周收益率、月收益率的Hurst指數分別為0.6507,0.7000,0.6906及0.7576。上述經驗研究表明,上海及深圳股票市場並不呈隨機行走的特徵,而具有狀態持續特徵,同時也意味著中國股票市場不是弱式有效的。
事實上,關於中國股票市場是否弱式有效,一致存在極大爭議。正如張亦春與周穎剛(2001)所意識到的那樣,一方面,多數研究人士憑經驗就感覺到中國股票市場投機性強,遠未達到有效狀態。例如,滬深A股市場近年來上市公司財務造假不斷案發 ,莊家操作市場盛行 ,股價嚴重脫離內在價值,上海A股市場在2000年及2001年平均市盈率高達60多倍,被很多學者斥為「賭場」,宣稱這樣一個市場已達到弱式有效狀態,確實讓人們難以接受。另一方面,許多學者所作的實證研究卻表明,證券價格收益率序列十分接近隨機行走模型,因而無法有力地拒絕有效市場假設。經驗感覺與理論研究結論大相徑庭,這其中的原因究竟是什麼?到底是現實錯了?還是學術理論研究有問題?混沌的思想讓我們豁然開朗!因為,如果證券價格存在混沌過程,或者是在混沌過程基礎上迭加一個隨機過程,那麼,市場顯然是無效的,但證券價格收益率序列同樣能通過隨機性檢驗。例如,假設證券價格波動序列是一個Logistic 映射過程,它顯然是一個確定性的混沌過程,但是,這一過程在許多計算機系統是被當作偽隨機數發生器,常規的檢驗方法根本無法識別確定性過程,而是將其視為隨機序列!如果這樣的話,所有通過考察證券價格是否能夠通隨機性檢驗的方法來考察資本市場有效性的研究,其理論基礎及研究結論都將受到質疑。

3、滬深A股市場價格混沌特性實證研究
本文同時採用R/S分析方法及關聯維數(Correlation Dimension,CD)分析方法考察滬深A股市場的非線性特徵。通過R/S分析方法能夠識別出證券價格序列是否存在持續效應,這在某種程度上可以驗證股票市場是否存在正反饋交易機制,正反饋過程是產生混沌的前提。採用關聯維數分析,可以識別股價序列是否存在混沌特徵。我們的數據來源於乾隆公司的錢龍資訊系統。
3.1 R/S分析
Hurst(1951),Mandelbrot(1972)及Lo(1991)等所發展並完善了赫斯特指數(Hurst Index)的分析方法,即重標定域(Re-scaled range,R/S)分析方法。
赫斯特指數(H)可以用來識別時間序列的非隨機性, 還可以識別序列的非周期性循環,因而可以用於識別時間序列的非線性特徵。如果序列的赫斯特指數不等於0.50,則觀測就不是獨立的,每一個觀測值都帶著在它之前發生的所有事件的「記憶」,這種記憶不是短期的,它是長期的,理論上講,它是永遠延續的。雖然遠期事件的影響不如近期事件的影響大,但殘留影響總是存在的。在更寬泛的尺度上,一個表現出赫斯特統計特性的系統是一長串相互聯系的事件的結果。今天發生的事情影響未來,今天我們所處的地位是過去我們所曾處的地位的一個結果。
關於Hurst赫斯特指數的詳細計算參見文獻Mandelbrot(1972)及Lo(1991)等,其計算過程如下:
1.對一個時間序列 ,考察長度為n的時間窗口內的子序列, ,n=1,2,3,……K,計算序列的平均值為:
………………………………(1)
2.計運算元序列偏離均值的差值
………………………………(2)
顯然, 的均值為零,這是重標定或歸一化(標准化)。
3.計算偏離均值的累加值
……………………………(3)
4.計算時子序列的域

………………………………(4)
5.計算采樣子序列的標准差
………………………………(5)
6.計運算元序列重標定域
……………………………(6)
7.求解全序列 的均值
………………………………(7)
8.求解赫斯特指數
與 有冪關系,即:
……………………………(8)
……………………………(9)
在對數坐標上,設水平軸n,縱軸為 ,對 與 進行回歸, 則線性回歸的斜率為赫斯特指數。
我們選取上海證券交易所A股綜合指數從1990年12月19日至2003年12月23日,以及深圳證券交易所A股綜合指數從1992年10月4日至2003年12月23日期間的交易數據,分別計算其日收益率及周收益率序列的赫斯特指數,從而考察滬深A股市場的證券價格是否存在非線性特徵。
採用上述方法,計算得到滬深A股綜合指數的赫斯特指數,如表1所示,在圖2—圖5中,還詳細地列出了R/S分析圖。
表1 滬深A股綜合指數Hurst 指數
上海A股指數 深圳A股指數
日收益率序列H值 0.66(t=336) 0.63(t=306)
周收益率序列H值 0.69(t=84 ) 0.69(t=97 )

圖2 上證A股指數日收益率序列 圖3 上證A股指數周收益率序列

圖4 深圳A股指數日收益率序列 圖5 深圳A股指數周收益率序列
從表中數據我們可以看到,滬深A股市場的赫斯特指數無論以周數據統計還是以日數據統計,結果基本一致,均在0.60以上。H值大於0.50,意味著今天的事件確實影響明天,即是說,今天收到的信息在其被接收到之後繼續被市場計算進去, 這從另一側面印證滬深A股市場價格並不呈隨機行走狀態,收益序列之間存在一定的關聯性,這是一種持續效應(Persistence effect)。如果股價序列在前一個期間是向上運動的,則它在下一個期間將更可能繼續向上運動的趨勢,反之,在前一個期間是向下運動的,則它在下一個期間更可能持續向下運動的趨勢。股價序列的這一特性與經驗感覺是一致的,無論是國內股票市場還是全球其它地區的股票市場,典型的牛市或者熊市,並非短暫的數日或者數月,往往持續數年。而股票市場極其異常的波動,例如,美國股市1929年股災、1987年的暴跌等,均使投資者對市場的信心受到嚴重打擊,市場在其後很長一段時間深受其影響。股價的持續效應在某種程度上印證了股票市場存在的正反饋效應機制。
3.2 關聯維數分析
Grassberger 與Procaccia(1983a,1983b)提出了關聯維數(Correlation Dimension,CD)方法,用以考察時間序列的非線性特性。其基本思想是:如果一個混沌過程是n維確定性過程,則該過程將充滿n維空間,但如將其置於更高維的空間里,該過程將留下許多「洞眼」。一般地,關聯維數度量的是相空間被一組時間序列「填充」的程度,關聯維數越大,填充程度越高,表示時間序列內部結構越復雜,它類似隨機過程時間序列的程度越強。需要指出的是,我們僅對低維混沌過程感興趣。 如果股票價格真的是高復雜性的混沌過程,我們採用有限的樣本數據是永遠也無法識別出其復雜的結構的。此時,它可能與一個良好的「偽隨機數發生器」產生的數據相近,高維混沌過程與隨機過程將沒有實際意義的區別。
設時間序列 由具有 個自由度的非線性動態系統產生,可以構造 維相空間失量:
………………(10)
其中, 被稱為鑲嵌維(Embedding dimension), 為適當的時滯單位。時間序列過程在相空間的運行軌道是由一系列 維失量構成。如果該系統最終收斂為一組確定性過程,則該系統的運行軌道將收斂於相空間中維數低於 的相空間子集,即吸引子(Attractor),在這些吸引子周圍的運動是混沌過程,具有非周期性且長期運動狀態無法預測。
考慮吸引子附近的失量集合 ,關聯積分(Correlation Integral) 定義為對於任意給定的 ,那些彼此之間的距離小於 的點數對(Pairs of Points) 的數量占所有可能的點數對的比例,即:
……………………(11)
其中, ……………(12)
當 時,對任意小 ,可以預期C遵循指數冪變化規律,即:
,從而關聯冪(Correlation Exponent)可以通過對 與 對回歸計算得到:
……………………………(13)
如果系統存在確定性混沌過程,隨著鑲嵌維數的增加,關聯冪D值達到飽和值以後,將大約保持不變,這一關聯冪指數的飽和值就是吸引子的關聯維數。如果系統是隨機過程,則隨著鑲嵌維數的增加,D值亦將成比例地增加,趨向無窮大 。

圖6 上證A股指數在不同鑲嵌維空間中的關聯積分
圖7 上證A股指數關聯維

我們考察上海證券交易所A股綜合指數從1990年12月19日至2003年12月31日期間日收益率時間序列的關聯維。圖6為上證A股綜合指數在1-8維相空間中關聯積分 隨 值的變化情況。從圖中我們可以看到,在 值處於0.0003-0.005區間時, 與 的變化呈現出指數冪關系。圖7是關聯冪D隨鑲嵌維數m的變化情況,我們可以看到,隨著鑲嵌維數m超過2以後,關聯冪D值不再增加,而是穩定於大約 區間, 即上證A股綜合指數的關聯維數大約為1.4, 因此, 我們可以推測, 上證A股綜合指數存在關聯維數大約為 的低維確定性混沌過程。
相對於Scheinkman 與Lebaron(1989)及Brock與Back(1991)等計算得到的成熟資本市場關聯維數,我們計算得到的上海A股市場的關聯維數明顯更低。如果時間序列是一個低維確定性過程,則意味著時間序列在短期是具有一定的可預測性的。從這個意義上看,我們認為,相對成熟資本市場,上海A股市場指數的隨機性程度更低,而短期可預測性更強,這在某程度上也說明市場效率程度相對更低。另外,由於混沌特性,證券價格在短期具有一定的預測性,但進行長期預測則是極為困難的,從投資策略角度看,意味著基於證券價格短期變化的交易者可能存在獲取利潤的空間。

4、結論
在一個存在非線性正反饋機制的系統中,系統的演化理論上可能出現混沌過程。 證券市場由於雜訊交易者的存在、從眾心理及羊群效應等產生的群體性非理性行為,形成正反饋效應,從而可能導致證券價格的演變呈現出混沌過程,表現出復雜性。
本論文所做的實證研究表明,滬深A股市場指數的赫斯特指數大於0.5,這意味著滬深A股市場價格並不呈隨機行走狀態,收益序列之間存在趨勢持續的特性,這也在一定程度上說明了股價形成過程中存在正反饋效應。對上海A股市場指數的考察進一步表明,上海A股市場指數收益率序列存在低維確定性混沌過程,其關聯維數大約為1.4。 這一數值遠低於成熟資本市場的指標,這表明上海股票市場指數收益率序列隨機性低於成熟資本市場, 市場在短期的可預測性更強一些, 這在某種程度上表明市場的效率程度更低一些。市場存在確定性混沌過程,市場顯然是無效的,但是,由於混沌過程同樣能夠通過隨機行走模型檢驗, 我們認為, 這也許是為什麼關於資本市場效率的傳統實證檢驗結果仍然存在極大爭議的原因。因為常規檢驗方法無法區分混沌過程與隨機過程,因此,本論文認為,所有採用常規方法,通過考察證券價格是否符合隨機遊走模型,從而推斷資本市場有效性的研究,其理論基礎及研究結論均存在嚴重缺陷。由於證券價格運動的混沌特性,這意味著證券價格在短期具有一定的可預測性,但進行長期預測則是極為困難的。證券價格的這種混沌特性,從投資策略角度看,意味著基於證券價格短期變化的交易者可能存在生存的空間。

內 容 提 要
行為金融理論認為,投資者不是完全理性的,而是存在各種認知偏差。由於雜訊交易者的存在、從眾心理及羊群效應等產生的群體性非理性行為,證券市場存在正反饋效應。而且,投資者行為模式都是非線性的,在一個存在非線性正反饋機制的系統中,證券價格的演化可能出現混沌過程。
本論文所做的實證研究表明,滬深A股市場價格並不呈隨機行走狀態,而是存在非線性結構;上海A股市場指數收益率序列存在低維確定性混沌過程,其維數大約為1.4, 這一數值遠低於成熟資本市場的指標,這表明上海股票市場指數收益率序列隨機性低於成熟資本市場。由於市場存在確定性混沌過程,市場雖然是無效的,但同樣能夠通過隨機行走模型檢驗,這也從某一角度說明了,為什麼關於資本市場效率的傳統實證檢驗結果仍然存在極大爭議。由於混沌的存在,證券價格變化在短期具有一定的可預測性,但進行長期預測則是十分困難的。

❼ 請問怎麼用eviews研究股票市場周內效應

是自相關模型,需要建立因變數,導入數據,然後通過相關分析得出結論

❽ 股票市場與馬太效應有什麼關系

「馬太效應」在股市中也發揮著神奇的作用:在歷次的牛市行情中,個股之間都會出現兩極分化現象,其中的強勢個股始終恆強,尤其當強勢股股價漲高後投資者越是不敢追漲,強勢股越是能繼續上漲;而弱勢股卻常常弱者恆弱,投資者越是認為弱勢股調整到位或該漲了,弱勢股卻總是沒有象樣的表現。等到弱勢股終於開始補漲,強勢股也出現回調時,牛市往往已經告一段落了,最豐厚的主升浪行情已經結束了。
很多對股市「馬太效應」不了解的投資者,往往不能清楚地鑒別個股的優劣,他們常常會天真地幻想:今天這只股票漲了,明天一定會輪到另一隻股票漲;或者看到龍頭股上漲了,就簡單地認為與它同一板塊的所有個股也會跟風上漲,可實際上卻總是事與願違。在強勢行情中,漲過的個股往往還能繼續上漲,而不漲的股票則仍然徘徊不前;在同一板塊中即使領頭羊上漲了,也並不表示該板塊的所有個股都能聯動上漲。個股是否能聯動上漲,取決於板塊容量的大小、板塊熱點持續性的強弱、題材的想像空間、同一板塊的個股聯動性等因素。而且,即使投資者選中的跟風股聯動上漲了,但由於領頭羊具有先板塊啟動、後板塊回落的特性,所以,跟風股的安全系數和收益都遠遠小於領頭羊個股。因此,投資者與其追買跟風股,不如追漲領頭羊,這就叫做:「擒賊先擒王」。

熱點內容
貨幣為王投資什麼股票 發布:2025-06-16 01:36:14 瀏覽:311
最新華熙生物科技股票 發布:2025-06-16 01:35:15 瀏覽:738
康華生物股票歷史價格 發布:2025-06-16 01:32:10 瀏覽:984
股市中芙蓉出水形態是什麼意思 發布:2025-06-16 01:24:46 瀏覽:670
老闆怎麼用股權激勵 發布:2025-06-16 01:22:05 瀏覽:542
為什麼錢會變成貨幣供給 發布:2025-06-16 01:12:47 瀏覽:133
天天基金網如何更新手機版 發布:2025-06-16 01:04:56 瀏覽:685
怎麼查香港公司的股權登記 發布:2025-06-16 00:54:59 瀏覽:243
威龍科技股票 發布:2025-06-16 00:11:13 瀏覽:43
金融公司主要干什麼的 發布:2025-06-15 23:37:47 瀏覽:704