當前位置:首頁 » 市值市價 » 斐波那契數列股票市場煉金術

斐波那契數列股票市場煉金術

發布時間: 2022-09-19 07:41:48

㈠ 斐波那契數列是什麼在股市中怎麼應用

一、斐波那契數列指的是這樣一個數列:1、1、2、3、5、8、13、21、…… 這個數列從第三項開始,每一項都等於前兩項之和。

二、應用:通常在個別股票中不是太准確,通常在指數上有用。當市場行情處於重要關鍵變盤時間區域時,這些數字可以確定具體的變盤時間。使用斐波那契數列時可以由市場中某個重要的階段變盤點向未來市場推算,到達時間時市場發生方向變化的概率較大。

(1)斐波那契數列股票市場煉金術擴展閱讀

斐波那契數自然界應用

斐波那契數還可以在植物的葉、枝、莖等排列中發現。例如,在樹木的枝幹上選一片葉子,記其為數0,然後依序點數葉子(假定沒有折損),直到到達與那些葉子正對的位置,則其間的葉子數多半是斐波那契數。

葉子從一個位置到達下一個正對的位置稱為一個循回。葉子在一個循回中旋轉的圈數也是斐波那契數。在一個循回中葉子數與葉子旋轉圈數的比稱為葉序比。多數的葉序比呈現為斐波那契數的比。

㈡ 斐波那契數列的具體含義是什麼

沒有什麼具體的含義,可能在股票上有一定的用途。

㈢ 斐波那契數列是什麼在股市中怎麼應用

西元一二○二年,義大利數學家費波納西(Fibonacci)出版了他的 「算盤全書」。書中介紹費波納西數列(Fibonacci sequence):1 1 2 3 5 8 13 21 34 .......

仔細觀察這個數列,會發現:除了前兩個數字,其它的每一項都是 前兩項的和。而將前項數字除以後項數字,可以發現數字越大,其比值會逐漸向0.618收斂。此比例就是所謂的「黃金比率」(Golden ratio),希臘數學家Mark Barr用(Phi)來表示0.618,歐幾里德在「幾 何原本」(Element)用Golden mean稱呼它。

西元一五○九年Luca Pa cioli(1445~1517)首先稱它做「黃金比率」(Golden ratio)。在大 自然與許多地方都可以發現費波納西數列:如植物的花瓣數、向日葵 中心有順時針與逆時針的螺旋,這些螺線因品種不同而有不同,通常 有34與55一組、55與89一組。而黃金比率在生物的生長、美學與建築 上、金字塔、大自然之中是無所不在。著名的達文西的畫作就經常運 用黃金比率0.618,如「蒙納麗莎的微笑」和「達文西自畫像」。黃 金比率的寬長之比,被認為是最和諧,最合乎美的造型。這樣的現象 並非巧合,而是自然界里的一種規律,只是很幸運的被發現了,得以 運用在我們的生活周遭。

先前所提到的費波納西數列與黃金比率除了在跟費波納植物身上可以發現之 外,金融市場也存在這樣的規律,像艾略特波浪理論(Elliott Wave )即是另外一個數列、黃金比率有關的應用,此理論為一 套知名的市場趨勢分析系統,認為多頭市場從開始到空頭市場結束的 一個完整循環波動主要有八個波段,包括五個上升主波段及三個下跌 修正波段(兩數字皆為費波納西數列)。

而第一個回檔修正(2)為第一 波上升波段(1)的0.618倍,第二個回檔修正(4)為第二波上升波段(3 )的0.382倍

此理論運用上除了可以0.618(黃金比率)、0.382來預測大盤轉折的 幅度之外,還可以費波納西數列預測大盤轉折的時間,這樣一個可以預測轉折時間與空間的分析方式。除了0.618, 0.5 , 0.382這些回吐比率外還有1.382, 1.5 , 1.618 , 2, 1.618 等等的比率可以應用到1 浪與 3 浪和5浪之間的比例。通常在個別股票中不是太准確,通常在指數上有用。

㈣ 斐波那契數列與黃金分割有什麼關系

那斐波那契數列與黃金分割是什麼關系,經過多方研究發現,相鄰兩個斐波那契數的比值是隨著序號的增加逐漸趨於黃金分割比。即f(n)/f(n+1)-→0.618…。由於斐波那契數都是整數,兩個整數相除的商是有理數,所以只是逐漸逼近黃金分割比這個無理數。但如果繼續我們繼續計算出後面更大的斐波那契數時,就會發現後面相鄰兩個數的比會非常接近黃金分割比。

而且我們還有一個例子更能說明這個問題。那就是我們大家都熟知的五角星/正五邊形。五角星非常漂亮,我國的國旗有五顆,還有不少的國家的國旗也用五角星,為什麼呢?那是因為,五角星的幾條線段之間的長度關系都是符合黃金分割比的,而且正五邊形對角線連滿後所出現的三角形,也都是符合黃金分割三角形。黃金分割三角形還有一個特殊性。我們知道,所有的三角形都可以用四個與其本身全等的三角形來生成與其本身相似的三角形,但黃金分割三角形卻是可以用5個與其本身全等的三角開生成與其本身相似的三角形。由於五角星的頂角是36度,這樣也可以得出黃金分割的數值為2Sin18。所以利用線段上的兩個黃金分割點就很容易做出五角形和正五邊形。

㈤ 什麼是斐波那契數列與黃金分割炒股在實戰中如何應用

斐波那契數列應用到股市中具有神奇的效果。

具體數列為:數字1、1、2、3、5、8、13、21、34、55、89、144......前面兩數相加得後面一個數。 2。黃金分割位數字的計算是: 1、相鄰的兩個數互除,得數約等於0.618(記住是相鄰的)。 2、相隔的兩個數互除,得數約等於0.382和2.618(記住是相隔的)。 3、高位數除相鄰的低位數,得數約等於1.618。 4、0.382 X 0.618 = 0.236。 5、通常所用的黃金分割率為: 0.236、 0.382、0.5、0.618、0.809、1.236、1.382、1.618、2、2.618、3.236、4.236、5.236、6.854。


黃金分割率的演算同斐波那契數字密不可分。斐波那契數字同黃金分割位是相互印證的關系。斐波那契數字表現的是時間的長短,黃金分割位提示的是空間上升下降的幅度。

㈥ 股票分析:斐波那契數列線是怎麼做出來的

高手談不上!算手癢相互交流吧!我談點斐波那契數列的個人觀點吧:1、1、2、3、5、8、13、21.....這樣的前數家後數等於下一個數的數字組合在很多領域都有運用。當然股市也有很多的人士運用。他的神奇在於前一項與後一項之比越來越逼近黃金分割。這在股市上也是很多人熱衷的技術運用。甚至在國外還有專門研究的機構。我個人的看法是,它和波浪理論一樣。在起算點的把握上存在很大的不確定。這樣很難把握住股市的時間倉。加上國內股市的政策因數過多讓這個神奇的數字在研判上打了很大的折扣。國內很多運用量價關系來研判短期的。在中長期上很多會結合黃金分割。但真的用斐波那契數列的的確不多。我知道有朋友把ma改成斐波那契數列的數值的。不過我沒有研究過!作為研究可以試試!不過個人建議不要把實驗階段的指標用於實際操作!呵呵!用空大家交流!

㈦ 斐波那契數列在股市中的使用方法

可以利用斐波拉契數列時間窗口推算股票變盤點,從大的底部或頂部算起,在13,21,34,55天這些時間位置通常比較容易形成轉折,短期大盤連續上漲或下跌5、8、13天左右通常都容易出現短期轉向。

㈧ 斐波那契數列的公式是什麼

斐波那契數列:1,1,2,3,5,8,13,21……

如果設F(n)為該數列的第n項(n∈N+)。那麼這句話可以寫成如下形式:
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)

顯然這是一個線性遞推數列。

通項公式的推導方法一:利用特徵方程

線性遞推數列的特徵方程為:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.

則F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5

∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根號5】

通項公式的推導方法二:普通方法

設常數r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
則r+s=1, -rs=1

n≥3時,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]

將以上n-2個式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化簡得:
F(n)=s^(n-1)+r*F(n-1)

那麼:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(這是一個以s^(n-1)為首項、以r^(n-1)為末項、r/s為公差的等比數列的各項的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)

r+s=1, -rs=1的一解為 s=(1+√5)/2, r=(1-√5)/2
則F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

㈨ 斐波那契數列在生活中有哪些典型的應用

菲波那契數列指的是這樣一個數列:
1,1,2,3,5,8,13,21……
這個數列從第三項開始,每一項都等於前兩項之和
它的通項公式為:[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 【√5表示根號5】
很有趣的是:這樣一個完全是自然數的數列,通項公式居然是用無理數來表達的.
該數列有很多奇妙的屬性
比如:隨著數列項數的增加,前一項與後一項之比越逼近黃金分割0.6180339887……
還有一項性質,從第二項開始,每個奇數項的平方都比前後兩項之積多1,每個偶數項的平方都比前後兩項之積少1
如果你看到有這樣一個題目:某人把一個8*8的方格切成四塊,拼成一個5*13的長方形,故作驚訝地問你:為什麼64=65?其實就是利用了斐波那契數列的這個性質:5、8、13正是數列中相鄰的三項,事實上前後兩塊的面積確實差1,只不過後面那個圖中有一條細長的狹縫,一般人不容易注意到
如果任意挑兩個數為起始,比如5、-2.4,然後兩項兩項地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你將發現隨著數列的發展,前後兩項之比也越來越逼近黃金分割,且某一項的平方與前後兩項之積的差值也交替相差某個值
斐波那契數列別名
斐波那契數列又因數學家列昂納多·斐波那契以兔子繁殖為例子而引入,故又稱為「兔子數列」.

斐波那契數在植物的葉、枝、莖等排列中發現.例如,在樹木的枝幹上選一片葉子,記其為數0,然後依序點數葉子(假定沒有折損),直到到達與那息葉子正對的位置,則其間的葉子數多半是斐波那契數.葉子從一個位置到達下一個正對的位置稱為一個循回.葉子在一個循回中旋轉的圈數也是斐波那契數.在一個循回中葉子數與葉子旋轉圈數的比稱為葉序(源自希臘詞,意即葉子的排列)比.多數的葉序比呈現為斐波那契數的比.

這個東西在數學建模上可能會有應用,在自然科學的其他分支,也有許多應用。例如,樹木的生長,由於新生的枝條,往往需要一段「休息」時間,供自身生長,而後才能萌發新枝。所以,一株樹苗在一段間隔,例如一年,以後長出一條新枝;第二年新枝「休息」,老枝依舊萌發;此後,老枝與「休息」過一年的枝同時萌發,當年生的新枝則次年「休息」。這樣,一株樹木各個年份的枝椏數,便構成斐波那契數列。這個規律,就是生物學上著名的「魯德維格定律」。
另外,觀察延齡草、野玫瑰、南美血根草、大波斯菊、金鳳花、耬斗菜、百合花、蝴蝶花的花瓣,可以發現它們花瓣數目具有斐波那契數:3、5、8、13、21、…具有13條順時針旋轉和21條逆時針旋轉的螺旋的薊的頭部
這些植物懂得斐波那契數列嗎?應該並非如此,它們只是按照自然的規律才進化成這樣。這似乎是植物排列種子的「優化方式」,它能使所有種子具有差不多的大小卻又疏密得當,不至於在圓心處擠了太多的種子而在圓周處卻又稀稀拉拉。葉子的生長方式也是如此,對於許多植物來說,每片葉子從中軸附近生長出來,為了在生長的過程中一直都能最佳地利用空間(要考慮到葉子是一片一片逐漸地生長出來,而不是一下子同時出現的),每片葉子和前一片葉子之間的角度應該是222.5度,這個角度稱為「黃金角度」,因為它和整個圓周360度之比是黃金分割數0.618033989……的倒數,而這種生長方式就決定了斐波那契螺旋的產生。向日葵的種子排列形成的斐波那契螺旋有時能達到89,甚至144條。

㈩ 股票13 21 34 55 89 什麼意思

股票13 21 34 55 89 什麼意思 ?
對於你這個不明確完整的問題,我只能按我的理解來為你解答下,希望能幫到你。
這里的5組數字我認為是股市行情分析軟體上用於技術分析的均線(K線),如13日、 21日線。而一般普通的證券公司的行情軟體的均線是:5 10 20 30 60。如果你有炒股就會知道它的用途了。

熱點內容
央行怎麼發行回收貨幣 發布:2025-07-04 06:26:13 瀏覽:408
市值50萬的房子過戶多少錢 發布:2025-07-04 06:19:26 瀏覽:479
瀘州老窖股市行情怎麼樣 發布:2025-07-04 06:18:39 瀏覽:360
市值加權的基金有哪些 發布:2025-07-04 06:16:38 瀏覽:36
1百萬如何理財 發布:2025-07-04 06:14:09 瀏覽:70
淡水泉有哪些基金經理 發布:2025-07-04 05:48:13 瀏覽:323
降准對於銀行股票的影響 發布:2025-07-04 05:44:03 瀏覽:898
基金一萬收益多少 發布:2025-07-04 05:35:28 瀏覽:527
高科技石墨烯股票 發布:2025-07-04 05:29:37 瀏覽:583
怎麼查企業股權結構 發布:2025-07-04 05:28:13 瀏覽:863