当前位置:首页 » 金融理财 » 为什么ai能和金融紧密结合

为什么ai能和金融紧密结合

发布时间: 2023-02-18 02:01:15

⑴ 人工智能赋能金融科技:技术驱动及未来机遇

数字化转型和新兴技术颠覆大潮正在不断地重塑各行各业。高速发展的金融科技在人工智能的“加持”下,展现出更多关于未来的想象。“新基建”浪潮加速大数据、云计算、人工智能、区块链等信息技术,在金融科技领域的融合应用,为行业转型升级持续赋能。

金融科技生态关键技术ABCD,包括人工智能(A)、区块链技术(B)、云计算(C)、大数据等(D)。ABCD技术逐渐成为金融行业发展的核心驱动因素,逐渐形成融合生态,推动金融科技发展进入新阶段。

金融科技产业生态逐渐形成

金融与科技之间的关系是“互相赋能”。科技企业以强大的技术驱动力赋能金融服务,通过大数据、人工智能、云计算、物联网、区块链等技术为金融市场、金融机构或金融服务,提供新的业务、模式、应用、流程或产品服务,科技驱动加速重构整个金融行业的生态。随着新技术与实际场景的不断融合以及创新应用,新技术在金融科技的边界不断突破,创新性的服务模式及业态不断涌现,且在实际的应用场景中逐渐落地并迭代优化。

一个新的金融科技时代,正在加速到来。

加速金融科技业务模式重构

人工智能时代已然到来,技术驱动下,金融科技的边界不断被突破,为金融服务带来更多可能。金融新基建的“新”,一方面是新技术应用对于传统金融市场硬件设施的优化,另一方面是如何革现有的制度、原则和法规以适应新型金融服务的需求。而后者是 基于技术创新及用户体验双向驱动不断生成并逐渐完善的生态圈模式。 以银行为例,银行通过开放API与创新科技公司合作,提升自身技术创新能力和效率,利用人工智能、物联网等领先科技,降低银行运营成本、扩大数据积累、提升客户体验,以科技为驱动解决客户痛点。

场景为王 金融科技服务的更多可能

金融不单是一个场所而是一种服务,将会碎片化地融入我们的生活场景中。 金融科技的强大赋能,以科技力量为驱动,以场景化、智能化的用户体验,为金融服务的场景提供更多的想象空间。 金融与科技的融合,通过线数字化营销活动,帮助银行、保险、互金的用户创造服务场景,打通线上营销渠道,这其实是场景化的金融需求。以开放银行为例,银行通过API开放赋能给更多金融科技服务提供商,一方面是帮助更多的互联网产品提升价值,另一方面则是切入更多场景化应用,在数字化金融、产品服务创新和营销运营等核心业务能力上实现深度连接。

人工智能等在金融科技的场景应用,主要表现在反欺诈领域以及获客拓展场景的运用等。科技的创新应用以及疫情的推动,加速金融机构业务线上化转型,随着跨行业的数据海量增加,基于线上业务的服务能力是否跟得上客户的需求变化,目前的线上业务渠道是否经得起承担主营市场拓展的责任考验,这些也需要金融科技和智能风控的支撑。

业务反欺诈是AI+金融科技的下一个蓝海

由于建立在云计算、人工智能等技术的基础之上,金融科技兼具金融和科技的双重属性,由此也形成了二者交织混合的风险特性。金融科技的开放性、互联互通性、科技含量更高的特征,使得金融风险更加隐蔽。人工智能下的金融科技的业务风控管理已经不能单纯依靠传统风控机制,场景化、智能化的业务场景,更需要用技术与监管相结合来重塑。

Garter《在线反欺诈市场指南》指出:到2023年,第三方欺诈检测服务应用覆盖将超过75%,相比当前25%的覆盖程度有较大提升空间。智能风控在金融机构的覆盖范围有较大提升空间。

人人云图赋能金融科技业务安全的应用实践

基于金融行业数据多且隐私性要求极高,人人云图结合金融业务线下业务线上化,着重加强了移动端安全防护体系的建设,在保护用户隐私前提下,构建以用户行为数据及业务数据为基础的自进化智能化防护体系,赋能机构移动安全防护,助力金融机构更敏捷、智能和自适应地处理安全危机,形成新的安全防护闭环。

金融科技的快速融合发展,要求科技企业为金融风控提供更加“模块化”的在线业务全流程的风险评估服务。 人人云图打破传统的以数据为核心平台模式,采用高技术、高稳定、高性能的模块化设计,灵活易用,不仅符合金融行业数据合规要求,还具备高稳定性、高兼容性特征。灵活的策略交互组件,助力金融机构根据欺诈行为快速调整风控策略,快速应对风险,保障业务的稳定运营。

未来已来

技术及用户体验“双轮驱动”,基于人工智能的金融科技变革正在迅速到来,且只会加速到来。

人人云图

人人云图2017年6月由资深数据科学家和安全专家共同创立,致力于互联网业务风控合规的数据技术服务,打击黑产上下游。通过聚焦银行、证券、O2O、航旅、电商等行业业务场景,为用户提供基于行为的用户画像,帮助鉴别用户质量、及时调整运营策略,助力业务健康、持续增长。

⑵ 人工智能如何创新金融服务流程

金融部门的公司可以利用人工智能来分析和管理来自多个来源的数据,以提供有价值的见解。这些创新成果帮助银行克服日常面临的困难,同时提供贷款管理或付款处理等日常服务。现在,让我们来看看人工智能驱动的金融科技创新的一些用例,以及金融科技公司可以从这项技术中获得的主要好处。提高安全性金融领域的人工智能为许多旨在加强安全预防措施的解决方案提供支持。例如,银行提供只能通过面部或指纹识别才能访问的应用程序。这在很大程度上归功于人工智能。一些专家声称,在不久的将来,密码和用户名将被人工智能支持的安全解决方案所取代。语音识别、人脸识别和其他生物识别数据可以添加一个补充安全层,并且比传统密码更难绕过。金融科技中的人工智能包含行为解决方案,可以引发金融革命。AI 可以监控客户如何与他们的交易互动并确定他们的典型行为。假设客户连续几次尝试在其典型位置以外的地方从其帐户中提取7,000美元。人工智能驱动的机器学习将把这种活动检测为可能的欺诈行为并加以阻止。

⑶ 人工智能在金融领域的应用

金融科技的蓬勃发展和深入应用,是推进普惠金融建设的重要基石,也是乡村经济振兴发展的重要引擎。

智慧眼以人工智能、大数据、生物识别等核心技术,从湖南农信社的服务平台出发,构建“金融+”生态。以智能终端产品为依托,将银行柜台业务延伸至村委会、社区、供销社、商场、超市或社区银行。一方面,实现金融业务的存取款、查询、转帐、贷款等业务功能;另一方面,实现生活缴费、政务办理、社保业务、医保业务、政策查询等便民服务,实现金融+的功能。智慧眼金融智慧终端打造的7×24小时全场景的“金融+”一站式综合服务模式,将更好的服务于城乡居民,更好的拓展银行的业务渠道,提高金融服务的覆盖面、可得性、满意度。

⑷ 人工智能在金融科技领域有哪些应用场景(上)——基础介绍

定义 :人工智能即是让计算机系统模拟出感知、推理、学习、决策等人类行为。

五要素行业分析框架 :基础实施、算法、技术方向、具体技术、行业解决方案。

金融科技领域的应用则属于最终的行业解决方案层

 

大数据和硬件是人工智能的基础设施

大数据是人工智能的前提条件。数据即是信息,数据是进一步深加工的原材料,有了大数据的基础,才可以运用人工智能算法去解决具体问题。金融领域在数据方面有先天优势。首先,金融领域属于强数据导向的行业,且存在大量的标准化数据,例如公司的财务数据、股市债市的历史交易数据等等。其次,金融数据十分注重实效性,对人工智能的需求高。

在有了海量数据的前提下,随即产生的是对海量数据的计算需求,AI芯片应运而生。目前AI芯片发展的重点是针对神经网络等架构实现高速运算的核心硬件,即算力提高阶段。

算法是人工智能的核心

机器学习是人工智能的一个分支,是指通过模仿人脑,在经验学习中改善具体算法的性能;深度学习也是人工智能的一个分支,是指使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。

深度学习分类:

有监督:更强调人的作用。利用给定的训练数据,集中学习出一个函数(模型参数),当新的数据到来时,可以根据已知的函数预测结果,在这个过程中,训练及中的目标是由人标注的。

无监督:无监督学习目标不是告诉计算机怎么做,而是让计算机自己去学习怎么做事情。在无监督的深度学习中,输入的数据没有被标记,也没有确定的结果,数据样本类别未知,需要计算机根据样本间的相似性对样本集进行分类(聚类,使类内差距最小,类间差距最大)。

半监督学习:介于前两者之间,使用半监督学习时,将会要求最少的人员从事工作,同时,又能够带来比较高的准确性。

机器学习步骤:

训练:通常需要通过大量的数据输入,或采取增强学习等非监督学习方法,训练出一个复杂的深度神经网络模型,训练过程由于涉及海量的训练数据(大数据)和复杂的深度神经网络结构,需要的计算规模非常庞大,通常需要GPU集群训练几天甚至数周的时间。

推断:利用训练好的模型,使用新的数据去“推断”出各种结论,如视频监控设备通过后台的深度神经网络模型,判断一张抓拍到的人脸是否属于黑名单。

⑸ 人工智能深度赋能金融 科技风口呼唤领军人才

科技 改变世界,创新引领时代。

8月29日至31日,2019世界人工智能大会在上海世博中心召开,大会围绕“智联世界 无限可能”的主题,从技术趋势、应用落地、产业生态、人才培养和公共治理等多角度,对人工智能领域的前沿技术、重点行业和重要话题进行深入探讨。

AI深度赋能金融

提及金融业务,脑海中立马浮现风控、反欺诈、大数据等系列专业名词,但这些在普通人看来,未免太过晦涩难懂。现在,在今年人工智能大会的浦东世博展览馆中,金融 科技 公司提供一种更为精彩的体验,以更加“好玩”的方式,高效拉近我们与金融之间的“最后一公里”。

“微表情识别技术,可以识别人类开心、愤怒、厌恶、恐惧、伤心、惊讶以及面无表情这七大类情绪,总计54种情绪的识别能力、39种面部动作单元,并且可以识别90%以上表情变化。”在展览现场,金融壹账通技术人员介绍称。

据了解,该微表情识别技术曾斩获国际面部动作单元识别竞赛世界第一名的荣誉,并大量运用在贷款面审环节中,帮助面审人员提示骗贷风险。

“不仅是表情上的情绪,机器甚至都可以识别出文字的情绪。”现场人员介绍称,体验者打开“Gamma O”开放平台,里面有各式各样的人工智能技术,其中有一项便是文字情绪识别。只要体验者输入一段话,就可智能识别出体验者输入文字的情绪。

值得注意的是,AI技术在金融领域的应用,并不仅仅限于To B(针对行业)领域,在其他To C(针对个人)的金融服务领域,比如客服方面,也可以大展身手。

此次大会上,金融壹账通还展示了多轮对话、语义理解等技术,无论是体验者说的、写的,聪明的机器都能理解,并通过对应逻辑分析所需结果。相关工作人员向体验者介绍称,多轮对话、语义理解技术可以应用到智能外呼机器人中,通过搭建AI机器人代替人工完成基础工作。在智能外呼机器人中,增加情绪识别技术,还可以感知客户的情绪变化,减少人工投诉的同时,能够找到业务突破口。该服务可应用于多个金融业务场景,包括存量客户经营、新产品推荐、还款提醒、客户回访调研等。通过机器人取代大量人工客服,从而大幅降低呼叫中心的人力成本,提高服务效率。

随着人工智能 科技 的快速发展,被誉为金融 科技 “无人区”的AI 科技 ,正成为财富管理行业的重要创新方向,同时也是“兵家必争之地”。在大会期间,陆金所宣布,其正通过金融 科技 的技术与经验,用 科技 赋能信托行业,帮助传统信托行业解决资产风控难、运营效率低、客户体验差、市场触达难、获客成本高等五大痛点。

同时,陆金所正式对外展示“4KY”体系,即陆金所将AI技术融入全财富管理场景,全面升级智能理财交互体验,为用户提供个性化财富管理服务,重塑财富管理行业。

目前,陆金所平台已经开始尝试,使用智能理财机器人与用户进行自然语言交流与开放式对话,并为用户提供涵盖账户查询、产品咨询、市场分析、投资者教育在内的各种金融服务。通过运用人工智能进行客户服务,陆金所力求解决用户与产品的匹配问题,并解决更多用户仍未满足的大量金融服务需求,希望能够扭转金融服务仅为部分顶层人群服务的刻板印象,让金融服务普惠大众。

数据显示,借助AI的帮助,陆金所平台的用户服务交互频率比以往提升了5倍,极大地提升用户服务面及响应速度。同时,人工智能客服的问题解决率提升了2倍,大大提升了用户的服务效率。

事实上,客服智能化、人性化服务的背后,正是AI、大数据、云计算等 科技 力量共同驱动的。蚂蚁金服和埃森哲近日联合推出的《新客服行业白皮书》用户调研显示,80%的用户希望客服更加了解自己;71%的用户表示,相比与人沟通,希望可以自助解决问题。消费者对客户服务的普惠性、技术化、定制化,以及洞察力、自助化程度有了更高要求。

2017年8月,支付宝提出“新客服”理念,并借助AI等手段,将被动式、等待式的传统服务模式转变为主动挖掘用户潜在需求,给用户提供更为普惠的服务。两年间,随着人工智能技术、大数据等技术发展,新客服进一升级为完整的行业解决方案。在服务好海量支付宝用户的同时,还可以把新客服的系统技术能力输出给行业,提高整个行业的效能,减少呼叫中心的运维成本。

蚂蚁金服方面数据显示,相较于2016年,2018年整体业务量增长了120%,但人力仅增长11%,满意度达到80%,大大提升服务效能。通过数据分析和人工智能手段,可以更加准确地扫描客户全程行为,同时预判、识别客户服务需求点,使得呼叫中心资源的调配使用更加精确。

浪潮之巅的“生产力”

在这些神奇且令人惊叹的技术背后,是AI正在潜移默化地改变着金融行业的业态。

目前,AI技术在金融领域的应用,想象的翅膀已为外界所塑造,但事实上,除了金融领域,自动驾驶、医疗、语音识别、图像识别等领域也是AI的重要赛道。那么,为什么偏偏金融会成为更加令人瞩目的“幸运儿”呢?

具体来说,朱明杰分析到,能够让AI成功应用的行业有一些共通点:

首先是信息化基础和数据量充沛;其次是应用场景和用户体量足够大,核心业务数据驱动;再次是付费意愿。因此,最先得到成功应用的是互联网行业。今天的金融行业也具备了这些条件,数据是金融的核心价值,通过人工智能、大数据、云计算等信息技术与金融业务深度融合的金融 科技 ,成为推动金融转型升级的新引擎。

不过,吴中也坦言,结合DATAVISOR的领域——智能风控反欺诈来看,其实也存在着不少难点。“在数据积累方面有很多的前期工作需要做,金融机构重视数据采集的结构化,电子化是基础。和其他领域有所不同,AI在智能风控领域的应用,拥有较强的攻防演变。坏人恶意欺诈的标签其实积累的比较少,而且需要不停的变化,因为攻击者一旦被拦截,会变化手法。

“在反欺诈的领域里,怎么在没有标签数据或者很少的标签数据情况下,解决一个比较大的问题,值得思考。其实很多AI的落地,使用大的数据样本,去解决一个小问题或者一个单点问题。但在金融领域,特别是反欺诈领域,是要用小的训练数据去解决很大的问题。”吴中说。

而在财富管理行业,“我们不仅要知道客户现在需要什么、能买什么,更要预测用户以后需要什么、适合什么。” 陆金所CTO毛进亮总结道,“AI技术正在从各个层面重塑财富管理行业。它不仅能解决传统人力理财顾问普遍面临的供需失衡、利益导向、成本高、门槛高、服务水平参差不齐的痛点,还可以通过大数据、机器学习等技术为投资者进行‘精准画像’,让机构更加了解客户需求、资产状况、风险偏好等方面,真正实现千人千面的个性化服务。从监管层面来说,AI技术与其他技术的配合,也能让财富管理服务流程更加公开透明,并且拥有完整的服务记录,为有效监管提供支持。”

事实上,除了金融行业,金融 科技 的玩家们也在 探索 其他能够用上AI这把“锤子”的场景。吴中谈及,“我们现在除了金融方面,也在对互联网领域进行有益的 探索 。结合无监督技术,我们会变得更加开放,并且变成一个平台化的产品。可以赋能更多不同的银行和其他金融机构,让他们在信息化的过程中,以较小的成本去接入比较好机器学习和无监督的技术,不用重新造轮子。 ”

同时,“我们也看到,比如保险业中的车险、寿险和社保,还有航旅等场景,都还拥有很多机会。”吴中说。

垂青AI创新人才

支撑AI向前发展的动力,是不断创新更迭的技术。而在技术背后,更是一代代“AI人”的持续 探索 与精进。我们不禁发问,一个优秀的“AI人”,应该是怎样的呢?

对此,在上海交通大学党委常委、副校长毛军发看来,扎实的数理基础、宽广的知识面、敏捷的思维必不可少。他还提出,对于有心从事人工智能行业的学生而言,如果真正喜欢的就去做,不喜欢也不要去凑热闹,选准的话就要坚持。“可能你会发现做AI这个行业没有你想象那么热闹,没有那么浪漫,但选准的话,就长时间坚持下去,一定会成功”。

微软全球执行副总裁沈向洋认为,对人工智能而言,现在是很激动人心的时代,有很多事项可去执行。然而,最重要的事情还是要志向高远。如果有机会做人工智能的科研,并且有这样的志向,一定可以做出了不起的工作。

2017年,国务院发布《新一代人工智能发展规划》,设定以2030年为期限的AI发展目标。为了达到这一目标,到2020年,许多里程碑需要达到,包括在基础研究领域做出重大贡献、成为吸引世界新兴人才的目的地,以及在人工智能产业上达到世界领先水平等。

以世界人工智能大会为契机,上海加快推进人工智能深度应用和产业发展,努力打造国家人工智能发展高地,成为全国领先的人工智能创新策源地、应用示范地、产业集聚地和人才高地。目前,上海已拥有人工智能核心企业1000余家,泛人工智能企业超过3000家,相关产业规模超700亿元,位居全国第一梯队。

朱明杰在AI青年科学家高端会议上抛出了这样的问题:

“今天的世界人工智能大会,有AI时代最优秀的年轻人们,最杰出的科学家们,富有经验的工业界前辈们,与这么多关心智能产业的领导们齐聚在上海,在这个刚刚开启的AI时代,能不能在上海也打造这样的闭环呢?”

在此次人工智能大会上,除了全球AI知名企业领袖齐聚、顶级学术大咖云集、人工智能新锐势力集体亮相外,AI青年科学家联盟的“A班计划”亦浮出水面。

对此,同为“A班计划”发起人的朱明杰表示:“对比硅谷的创业氛围和资源,我们要给年轻人更多的机会,让他们站在同一起跑线上。” 他认为,“相较更年轻的AI人才,我们年长几岁,有过创业经验,学术界教授也有很好的实验室资源。希望通过‘A班计划’这样一个项目,加速AI人才走向成功的速度。”

据了解,A班计划在遴选之初,即将目光瞄向全球范围内的优秀博士生和初创企业创始人(融资不超过A轮),“硬性条件”包括年龄在20-30岁之间,世界顶级学术会议的认可度,创业方向的 科技 含量等。

结合在氪信 科技 的实践经验,朱明杰表示,AI的时代风口,更加垂青于全才型AI创业者,创业公司首先要解答好商业本质问题,完成“从产品到客户到研发再投入”的商业闭环,确保自身茁壮成长,才有可能成为伟大的 科技 企业。人才之外,有效的环境是人才、市场、科研之间形成不断迭代的成功闭环。

本文源自国际金融报

更多精彩资讯,请来金融界网站(www.jrj.com.cn)

⑹ 人工智能如何赋能金融行业发展

人工智能如何赋能金融行业发展,主要体现以下几个方面:
构建客户画像,促进客户管理
结合人脸核身、文字识别、语音识别等人工智能产品,打造一个统一注册、统一认证的安全高效平台。为银行及保险客户建立优质的客户大数据和知识图谱打下基础。
利用AI人工智能,可以大程度地简化收集客户有效信息的过程,包括他(她)目前持有的保险单的详细信息、部分财务信息以及网上可查阅的客户帐户中的个人信息等。帮助构建客户的人物画像,对客户进行分层次管理,以便向其提供最为优质的服务。
准客户分析,智能推荐产品
根据用户基本信息、用户行为、消费行为、兴趣、关注、常住位置、实时位置、app行为、信用评分等纬度,通过大数据平台处理后建立用户群体画像。经过客群画像的数据积累,分析不同客户群体的基础标签,提炼出用户特征,为客户推荐与其需求最匹配的产品,实现精准营销。
数据有效整合,提供实时决策
接收数据源后,根据后台的数据计算处理程序,实现数据的实时共享和投放,包括智能核保、智能核赔、金牌话术及实时大屏演示等。利用人工智能对数据进行整合并应用,可以大幅缩减核保时间,降低冗杂劳务开销,从而降低成本。
打破数据孤岛,建立大数据风控
AI人工智能,具有超强的收集,处理、整合数据的能力,通过运用大数据构建模型的方法,对金融企业客户借贷进行风险管理控制和提示。收集贷款人的相关信用信息后,可通过预测、分析其近来的信用变动情况,及时做出相应提醒。
其次,整合金融行业的主流机构数据,利用集团公司的数据及行业数据形成共享,打破数据孤岛,更快、更精准的识别信贷黑名单。
展望整个金融行业的未来,尤其是在互联网保险及银行领域,随着AI深度学习的不断发展,人工智能的运用将会越来越广泛,越来越明显。
人工智能的开发最主要的目的就是为了替人类做复杂、有危险难度、重复枯燥等的工作,所以人工智能是以人类的结构来设计开发的,人工智能在得到较好的开发后国家也是全力给予支持。人工智能的开发主要也是为了帮助和便利人类的生活。所以人工智能的定义一直以来都是以“协助人类”而存在的。人工智能概念的火热促进了不少行业的兴起,比如域名,许多相关的.top域名已经被注册。

⑺ 大数据与人工智能在金融行业的发展需要以什么为基础

AI产品化是大数据与人工智能在金融领域发展的基础。因为光有理念创新是不够的,必须将大数据与人工智能紧密的结合到一起,实现一加一大于2的效果,这样才能为大数据和人工智能进入金融领域并取得长远发展打下坚实的基础。以上是我的全部回复,希望能够帮助到您,祝您生活愉快~

⑻ 人工智能在金融领域有哪些应用场景和作用

人工智能在金融领域是可以发挥多样性作用,但首先我们要了解人工智能是什么?
网络上的解释是:人工智能,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。
关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(CONSCIOUSNESS)、自我(SELF)、思维(MIND)(包括无意识的思维(UNCONSCIOUS_MIND))等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。
也就是说利用人本身的智能与分析问题、解决问题,形成一种算法机制。
在金融中,获客、风控、身份识别、客服等金融行业中的内容都可以利用人工智能进行改变,以较容易理解的客服为例,传统的金融客服都是人工的,而通过人工智能技术和自然语言处理,可以将客户问题进行分析,通过算法给出准确的回复,这就大大节省了金融服务的成本,在这一方面,传统金融机构并不都具备这样的技术实力,但是许多大型互联网公司都结合自身技术优势对此进行了技术研发,并将研发成果输出给金融机构,形成了良性循环。

⑼ 金融科技在大数据和人工智能方面有哪些应用

近年来,人工智能有一系列的突破,在金融领域的应用也发展很快。我们做FDT的时候心目中有一个偶像,就是美国的文艺复兴科技公司,它旗下基金的平均回报率,在1989年到2009年间达到35%,比索罗斯和巴菲特高出10个百分点。2015年9月花旗做了一个预测,未来10年智能理财管理会增加5万亿美元的收入。高盛预测2025年AI为金融行业带来的增值每年达到430亿美元。2017年3月摩根大通发布了一款金金融合同解析软件,只需几秒就能完成以前律师们36万小时的工作。这说明人工智能很可能大规模的在商业,特别是在金融领域应用。而且,在金融领域应用大数据也有一些先天的优势条件和基础。刚才黄院士讲了,人工智能的前提是必须有海量的大数据,数据越多越能说明问题,而金融公司天生就是数据公司,银行也好,交易也好,每天和数据打交道,而且这个数据的质量和数量也能达到一定的要求,这是人工智能得以应用的一个非常重要的数字基础。另外,银行金融的业务相当多的是预测和决策类的,正是人工智能模型最擅长的领域。还有一点,金融作为全社会资源的配置工具,用AI对其加以优化,无疑有很大的社会意义和商业意义。
下面讲讲智能教育。FDT最初的宗旨就是为了培养交易员,是一种公益教育。FDT有自己的教育理念,有智能的训练软件作为教育工具,还有一套完整的教育准则和评价体系。这套教育准则和评价体系就是FDT财商指数,这不仅是我们评价交易员的标准,也是个性化教育的工具。这个财商指数本质上是通过大数据给用户画像,我们的用户就是交易员和散户,以加深对他们交易行为和交易心理的理解。我们根据海量的模拟交易数据发明了FDT财商指数。大家看这张图,这张图的横坐标是风险控制能力,纵坐标是盈利能力,用这个可以分清不同的交易员的情况,然后对他进行个性化教育。我们把交易员分为四类。第一类是优秀的模拟交易员。他们相对于庞大的FDT用户是很少的,占比不足1%,这部分交易员收益风险俱佳,可以重点培养,甚至可以给他实盘操作。第二类就是高级模拟交易员,占比约9%,他们交易的意愿比较强,可以通过个性化的智能教育和培训帮助他提高。第三类就是中极模拟交易员,占比超过40%,他们风险意识较强,可以考虑被动投资。第四类是初级模拟交易员,FDT财商指数值比较低,但人数最多,占比超过50%,需要继续帮助他们上金融教育课。
FDT财商指数的创新,在于它结合了人工智能+大数据+行为经济学。传统的金融方法都是靠问卷,基于人工设定的权限规则,对设定之外的行为特征就无能为力了,而FDT的财商指数是基于人工智能,通过非线性的机器学习模型,将上百个交易特征结合在一起,自动地抽取大量的判定规则,最终形成了财商指数的分数排序。传统的金融是基于结算后的“天”级别的数据,数据量少,非常简单,而且是单机计算,无法发现隐藏的风险和行为特征,而FDT的财商指数是对大数据按照毫秒级的行情识别,进行实时的分步式并发处理,可以深刻地了解交易员的心理和行为,数据越多,对交易员的个性化描绘越清楚,从而可以更有针对性的做个性化的教育和训练。在特征方面,传统金融方法都是基于盈利或者回撤数据,而FDT财商指数是基于行为金融学来刻画用户的心理特征和行为偏差,这背后需要大数据架构的技术支持。综合来看,FDT财商指数的交易行为特征,是基于行为金融学和对冲交易的专家经验的紧密结合。这是我们对每个交易员提供的FDT财商指数的报告,这是一个大报告,四个象限,包括盈利、风险、一致性、活跃度等,每一个后面都有一些具体的分析。其他的都好理解,只解释一下“一致性”,简单来说就是“穿越牛熊”的能力,能够在变化的市场中灵活调整策略来实现稳定的盈利输出。下面是我们根据财商指数,对参与交易的这些学校做的一些排行。
下面讲智能交易。交易的核心,一个是止损,一个是预测,一个是配比。我们传统的交易都要设止损线,不管谁不管什么情况,到了止损线一律清仓,以免出现无法承受的交易损失,这种情况实际上是忽视了个性差异。有了人工智能以后,在大量历史数据情况下,利用机器学习的模型,可以给每个交易员设定不同的止损线,比如可以根据交易员的历史盈利情况设定不同的止损线,也可以根据交易员的不同风格来设定,有些交易员喜欢也善于在大起大落中把握机会,你就给他设定个性化的止损线。FDT可以根据财商指数来设定精确细致的止损线。再就是对波动的预测。搞交易的人都知道,资产的波动性很重要,因为它既代表风险也代表盈利,所以好的交易员是在风险波动中赚钱。怎么样预测和判断这个波动?现在有了大数据和AI,就可以通过机器学习的方法,对A股、期货做出一个波动的预测。还有就是资源的分配。对优秀的交易员,可以给他特定的交易机会。就像婚姻介绍所一样,我们用这个评价指数对交易员做一个评价,对股票做一个评价,不同的交易员做不同情况的市场,这样可以发挥每一个交易员的才干,这也是我们利用人工智能对交易的一种应用。
最后讲一下智能投资。中国的资产管理市场在迅速增长,到2020年,估计有180万亿人民币需要财富管理,年复合增长率达到14%。但是目前大部分用户投资不理性,买卖的时机不当,导致大部分基金产品盈利,但是大部分用户还是亏损。所以我们用人工智能的办法尝试解决。首先,是智能的用户理解,我们借助模拟交易平台和大量的数据,用FDT 财商指数,从金融行为学的角度评价用户的风险偏好。二是跟哥伦比亚大学的FDT智能资产管理中心合作,研究了一套智能资产组合优化的顶级算法。三是智能投资的风险管理,对每一个投资组合做未来盈利的亏损的概率估计。四是智能个性化的资金分配,对不同的客户,不同的风险偏好,给他不同的产品,这也是智能化和个性化的基金推荐,把合适的基金推销给最合适的客户。当然,由于中国的资本市场仍不成熟,市场运行还不完全是市场规律的反映,所以智能投顾的市场环境不稳定,所以我们还要创造一些条件。
总而言之,我们的金融交易市场结构不合理,要去散户化,美国用了70年,我们不要用那么多年。我们要培养优秀的交易员,通过FDT创新工厂探索有效的办法。我们通过培养交易员掌握大量的模拟交易的数据,再与科研机构合作来挖掘这些数据的价值,用以研发智能教育,智能交易和智能投顾,应该说在人工智能在金融市场应用方面作了初步的探索。相信在这方面我们还有非常大的空间,这件事不仅具有社会价值,而且具有商业价值。谢谢。

⑽ 人工智能及其在金融领域的应用

内容来自用户:专业好资料哦
人工智能及其在金融领域的应用
当前,我国经济发展处于新旧动能转换关键期,人工智能对于我国抢占科技制高点,推动供给侧结构性改革,实现社会生产力新跃升,提高综合国力和国际竞争力具有重要意义。2017年7月,国务院发布了《新一代人工智能发展规划》,提出通过智能金融加快推进金融业智能化升级;通过建立金融大数据系统,提升金融多媒体数据处理与理解能力;创新智能金融产品和服务,发展金融新业态;鼓励金融行业应用智能客服、智能监控等技术和装备,建立金融风险智能预警与防控系统。人工智能将对我国金融业的转型升级、提升竞争力产生深远影响。下载论文网人工智能概述定义人工智能(Artificial Intelligence,简称AI)是研究使用计算机模拟、延伸和扩展人的智能的理论、方法和技术的新兴科学。作为计算机科学的重要分支,人工智能发展的主要目标是使计算机能

热点内容
如何货币贬值 发布:2025-07-12 03:28:00 浏览:888
股票交易功能选择上海还是深证 发布:2025-07-12 03:22:24 浏览:242
百亿基金增持哪个中小市值股 发布:2025-07-12 03:13:34 浏览:424
天巩科技股票 发布:2025-07-12 03:02:45 浏览:122
刺激的基金有哪些 发布:2025-07-12 02:59:09 浏览:185
没有基金支持投国外期刊如何 发布:2025-07-12 02:59:08 浏览:582
货币的供求变化如何影响一国经济 发布:2025-07-12 02:57:44 浏览:997
6124点定投哪个基金最值钱 发布:2025-07-12 02:54:53 浏览:430
股票投资选择哪些行业 发布:2025-07-12 02:35:50 浏览:503
在线理财平台哪个最好 发布:2025-07-12 02:09:28 浏览:725