如何计算基金中协方差
① 协方差怎么计算,请举例说明
cov(x,y)=EXY-EX*EY
协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY
协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论
举例:
Xi 1.1 1.9 3
Yi 5.0 10.4 14.6
E(X) = (1.1+1.9+3)/3=2
E(Y) = (5.0+10.4+14.6)/3=10
E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02
Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02
此外:还可以计算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 - 4=4.60-4=0.6 σx=0.77
D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93
X,Y的相关系数:
r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979
表明这组数据X,Y之间相关性很好!
为样本均值,n为样本例数。
② 协方差的计算方法
cov(x,y)=EXY-EX*EY
协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY
协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论
举例:
Xi 1.1 1.9 3
Yi 5.0 10.4 14.6
E(X) = (1.1+1.9+3)/3=2
E(Y) = (5.0+10.4+14.6)/3=10
E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02
Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02
此外:还可以计算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 - 4=4.60-4=0.6 σx=0.77
D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93
X,Y的相关系数:
r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979
表明这组数据X,Y之间相关性很好!
如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。
但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。
协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。
协方差为0的两个随机变量称为是不相关的。
③ 期望收益率、方差、协方差、相关系数的计算公式
1、期望收益率计算公式
HPR=(期末价格 -期初价格+现金股息)/期初价格
例:A股票过去三年的收益率为3%、5%、4%,B股票在下一年有30%的概率收益率为10%,40%的概率收益率为5%,另30%的概率收益率为8%。计算A、B两只股票下一年的预期收益率。
解:
A股票的预期收益率 =(3%+5%+4%)/3 = 4%
B股票的预期收益率 =10%×30%+5%×40%+8%×30% = 7.4%
2、方差计算公式
(3)如何计算基金中协方差扩展阅读:
1、期望收益率,又称为持有期收益率(HPR)指投资者持有一种理财产品或投资组合期望在下一个时期所能获得的收益率。期望收益率是投资者在投资时期望获得的报酬率,收益率就是未来现金流折算成现值的折现率,换句话说,期望收益率是投资者将预期能获得的未来现金流折现成一个现在能获得的金额的折现率。。
2、方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。
3、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。
4、相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母 r 表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。
④ 两证券协方差和相关系数的计算
两证券协方差表示两种证_之间共同变动的程度:相关系数是变量之间相关程度的指标根据协方差的公式可知,协方差与相关系数的正负号相同,但是协方差是相关系数和两证券的标准差的乘积,所以协方差表示两种证_之间共同变动的程度。相关系数是协方差与两个投资方案投资收益标准差之积的比值,其计算公式为:相关系数总是在-1到+1之间的范围内变动,-1代表完全负相关了,+1代表完全正相关了,0则表示不相关。相关系数和协方差的变动方向是一致的,相关系数的负的,协方差就一定是负的。
相关系数是变量之间相关程度的指标,相关系数在0到1之间,表示两种报酬率的增长是同向的;相关系数在0到-1之间,表示两种报酬率的增长是反向的,所以说相关系数是变量之间相关程度的指标。总体来说,两项资产收益率的协方差,反映的是收益率之间共同变动的程度;而相关系数反映的是两项资产的收益率之间相对运动的状态。两项资产收益率的协方差等于两项资产的相关系数乘以各自的标准差。
协方差是一个用于测量投资组合中某一具体投资项目相对于另一投资项目风险的统计指标。其计算公式为:当协方差为正值时,这就表示了两种资产的收益率呈同方向变动;协方差为负值时,表示两种资产的收益率呈反方向变动。
总体来说,两项资产收益率的协方差,反映的是收益率之间共同变动的程度;而相关系数反映的是这两项资产的收益率之间相对运动的状态。两项资产收益率的协方差等于两项资产的相关系数乘以各自的标准差啦。
⑤ 方差和协方差的计算方法是什么
协方差分析是建立在方差分析和回归分析基础之上的一种统计分析方法。即ρXY=0的充分必要条件是COV(X,Y)=0,亦即不相关和协方差为零是等价的
cov(x,y)=EXY-EX*EY
协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY
方差公式:
⑥ 财务管理中协方差的计算公式
COV(X,Y)=E(XY)-E(X)E(Y)
协方差cov(x,y)=相关系数r×两项资产标准差乘积。
拓展资料:
在财务管理上,协方差是一个用于测量资产组合中某一具体投资项目相对于另一个投资项目风险的统计指标。
我们需要记住这个公式,两项资产收益率的协方差=两项资产收益率之间的相关系数×第一种资产收益率的标准差×第二种资产收益率的标准差。
协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。
协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。 [1] 在概率论和统计学中,协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 [1]
定义:
期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为:
从直观上来看,协方差表示的是两个变量总体误差的期望。
如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。
但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。
协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。
协方差为0的两个随机变量称为是不相关的。
⑦ 资产组合的预期收益率、方差和标准差是如何衡量和计算的
任何投资者都希望投资获得最大的回报,但是较大的回报伴随着较大的风险。为了分散风险或减少风险,投资者投资资产组合。资产组合是使用不同的证券和其他资产构成的资产集合,目的是在适当的风险水平下通过多样化获得最大的预期回报,或者获得一定的预期回报使用风险最小。 作为风险测度的方差是回报相对于它的预期回报的离散程度。资产组合的方差不仅和其组成证券的方差有关,同时还有组成证券之间的相关程度有关。为了说明这一点,必须假定投资收益服从联合正态分布(即资产组合内的所有资产都服从独立正态分布,它们间的协方差服从正态概率定律),投资者可以通过选择最佳的均值和方差组合实现期望效用最大化。如果投资收益服从正态分布,则均值和方差与收益和风险一一对应。 如本题所示,两个资产的预期收益率和风险根据前面所述均值和方差的公式可以计算如下: 1。股票基金 预期收益率=1/3*(-7%)+1/3*12%+1/3*28%=11% 方差=1/3[(-7%-11%)^2+(12%-11%)^2+(28%-11%)^2]=2.05% 标准差=14.3%(标准差为方差的开根,标准差的平方是方差) 2。债券基金 预期收益率=1/3*(17%)+1/3*7%+1/3*(-3%)=7% 方差=1/3[(17%-7%)^2+(7%-7%)^2+(-3%-7%)^2]=0.67% 标准差=8.2% 注意到,股票基金的预期收益率和风险均高于债券基金。然后我们来看股票基金和债券基金各占百分之五十的投资组合如何平衡风险和收益。投资组合的预期收益率和方差也可根据以上方法算出,先算出投资组合在三种经济状态下的预期收益率,如下: 萧条:50%*(-7%)+50%*17%=5% 正常:50%*(12%)+50%*7%=9.5% 繁荣:50%*(28%)+50%*(-3%)=12.5% 则该投资组合的预期收益率为:1/3*5%+1/3*9.5%+1/3*12.5%=9% 该投资组合的方差为:1/3[(5%-9%)^2+(9.5%-9%)^2+(12.5%-9%)^2]=0.001% 该投资组合的标准差为:3.08% 注意到,其中由于分散投资带来的风险的降低。一个权重平均的组合(股票和债券各占百分之五十)的风险比单独的股票或债券的风险都要低。 投资组合的风险主要是由资产之间的相互关系的协方差决定的,这是投资组合能够降低风险的主要原因。相关系数决定了两种资产的关系。相关性越低,越有可能降低风险。
⑧ 股票收益率,方差,协方差计算
股票收益率=收益额/原始投资额,这一题中A股票的预期收益率=(3%+5%+4%)/3=4%。
方差计算公式:
(8)如何计算基金中协方差扩展阅读:
股票收益率是反映股票收益水平的指标。投资者购买股票或债券最关心的是能获得多少收益,衡量一项证券投资收益大小以收益率来表示。反映股票收益率的高低,一般有三个指标:
1、本期股利收益率。是以现行价格购买股票的预期收益率。
2、持有期收益率。股票没有到期,投资者持有股票的时间有长有短,股票在持有期间的收益率为持有期收益率。
3、折股后的持有期收益率。股份公司进行折股后,出现股份增加和股价下降的情况,因此,折股后股票的价格必须调整。
⑨ 收益率的协方差计算
收益率的协方差的计算公式为Cov(x,y)=EXY-EX×EY。
1、协方差在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。
2、协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。
3、如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。
4、如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
拓展资料
协方差定义,在概率论和统计学中,协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。
期望值分别为E(X) = μ 与 E(Y) = ν 的两个实数随机变量X与Y之间的协方差定义为:
COV(X,Y)=E[(X-E(X))(Y-E(Y))]
其中,E是期望值。它也可以表示为:
直观上来看,协方差表示的是两个变量总体误差的方差,这与只表示一个变量误差的方差不同。
如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。
如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
如果X与Y是统计独立的,那么二者之间的协方差就是0。
但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。
协方差cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。
协方差为0的两个随机变量称为是不相关的。
⑩ 协方差怎样计算
1.在概率论和统计学中,协方差用于衡量两个变量的总体误差。COV(X,Y)=E[(X-E(X))(Y-E(Y))]自协方差在统计学中,特定时间序列或者连续信号Xt的自协方差是信号与其经过时间平移的信号之间的协方差。如果序列的每个状态都有一个平均数E[Xt]
=
μt,那么自协方差为其中
E
是期望值运算符。如果Xt是二阶平稳过程,那么有更加常见的定义:其中k是信号移动的量值,通常称为延时。如果用方差σ^2
进行归一化处理,那么自协方差就变成了自相关系数R(k),即有些学科中自协方差术语等同于自相关。自协方差函数是描述随机信号X(t)在任意两个不同时刻t1,t2,的取值之间的二阶混合中心矩,用来描述X(t)在两个时刻取值的起伏变化(相对与均值)的相关程度,也称为中心化的自相关函数。