eviews影响股票收益率的因素
㈠ 请问怎么用eviews研究股票市场周内效应
是自相关模型,需要建立因变量,导入数据,然后通过相关分析得出结论
㈡ eviews中如何用garch(1,1)计算股票波动率
打开Eviews然后点击Quick然后点击Equation Estimation,然后选择ARCH方法,然后估计就行了
股票波动率:
波动率是指标的资产投资回报率的变化程度,有实际波动率和历史波动率之分。它是江恩理论的一个重要内容,在期货期权市场的指导意义较股票市场更大。下面我们将对波动率的计算及交易策略进行详细讲解,希望对股民有一定的指导意义,赶紧跟着小编一起学习波动率的知识吧!
一、波动率:概述
波动率是指标的资产投资回报率的变化程度,有实际波动率和历史波动率之分。它是江恩理论的一个重要内容,在期货期权市场的指导意义较股票市场更大。
(一)、实际波动率
实际波动率又称作未来波动率,它是指对期权有效期内投资回报率波动程度的度量,由于投资回报率是一个随机过程,实际波动率永远是一个未知数。或者说,实际波动率是无法事先精确计算的,人们只能通过各种办法得到它的估计值。
(二)、历史波动率
历史波动率是指投资回报率在过去一段时间内所表现出的波动率,它由标的资产市场价格过去一段时间的历史数据(即St的时间序列资料)反映。这就是说,可以根据{St}的时间序列数据,计算出相应的波动率数据,然后运用统计推断方法估算回报率的标准差,从而得到历史波动率的估计值。显然,如果实际波动率是一个常数,它不随时间的推移而变化,则历史波动率就有可能是实际波动率的一个很好的近似。
二、波动率:计算
江恩理论认为,波动率分上升趋势的波动率计算方法和下降趋势的波动率计算方法。
(一)、上升趋势的波动率计算方法是:在上升趋势中,底部与底部的距离除以底部与底部的相隔时间,取整。
上升波动率=(第二个底部-第一个底部)/两底部的时间距离
(二)、下降趋势的波动率计算方法是:在下降趋势中,顶部与顶部的距离除以顶部与顶部的相隔时间,取整。并用它们作为坐标刻度在纸上绘制。
下降波动率=(第二个顶部-第一个顶部)/两顶部的时间距离
三、波动率:交易策略
对于投资者来说,期货市场上除了牛熊市之外,更多的时间处于一种无法辨别价格走势或者价格没有大幅变化的状况。此时的交易策略可以根据市场波动率的大小具体细分。当市场预期波动较小价格变化不大时,可采取卖出跨式组合和卖出宽跨式组合的策略。当预期市场波动较大但对价格上涨和下跌的方向不能确定时,可采取买入跨式组合和买入宽跨式组合的策略。
卖出跨式组合由卖出一手某一执行价格的买权, 同时卖出一手同一执行价格的卖权组成。
采用该策略的动机在于:认为市场走势波动不大,可以卖出期权赚取权利金收益。但是一旦市场价格发生较大波动,那就要面对遭受损失的风险。
“波动率”:波动率是江恩理论的一个重要内容,在期货期权市场的指导意义较股票市场更大。经过上面对波动率计算方法和交易策略的学习,相信投资者对波动率有了一定的了解。此外投资者在运用波动率指标时还需结合均线和波浪理论来综合分析.
㈢ 用GARCH(1,1)模型对股票收盘价收益率序列建模,如何在eviews软件中得出收益率序列的波动性方差
接分啦。。。找到一篇不错的文章
楼主看下,参考资料:
2.关联规则挖掘过程、分类及其相关算法
2.1关联规则挖掘的过程
关联规则挖掘过程主要包含两个阶段:第一阶段必须先从资料集合中找出所有的高频项目组(Frequent Itemsets),第二阶段再由这些高频项目组中产生关联规则(Association Rules)。
关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(Large Itemsets)。高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。一项目组出现的频率称为支持度(Support),以一个包含A与B两个项目的2-itemset为例,我们可以经由公式(1)求得包含项目组的支持度,若支持度大于等于所设定的最小支持度(Minimum Support)门槛值时,则称为高频项目组。一个满足最小支持度的k-itemset,则称为高频k-项目组(Frequent k-itemset),一般表示为Large k或Frequent k。算法并从Large k的项目组中再产生Large k+1,直到无法再找到更长的高频项目组为止。
关联规则挖掘的第二阶段是要产生关联规则(Association Rules)。从高频项目组产生关联规则,是利用前一步骤的高频k-项目组来产生规则,在最小信赖度(Minimum Confidence)的条件门槛下,若一规则所求得的信赖度满足最小信赖度,称此规则为关联规则。例如:经由高频k-项目组所产生的规则AB,其信赖度可经由公式(2)求得,若信赖度大于等于最小信赖度,则称AB为关联规则。
就沃尔马案例而言,使用关联规则挖掘技术,对交易资料库中的纪录进行资料挖掘,首先必须要设定最小支持度与最小信赖度两个门槛值,在此假设最小支持度min_support=5% 且最小信赖度min_confidence=70%。因此符合此该超市需求的关联规则将必须同时满足以上两个条件。若经过挖掘过程所找到的关联规则「尿布,啤酒」,满足下列条件,将可接受「尿布,啤酒」的关联规则。用公式可以描述Support(尿布,啤酒)>=5%且Confidence(尿布,啤酒)>=70%。其中,Support(尿布,啤酒)>=5%于此应用范例中的意义为:在所有的交易纪录资料中,至少有5%的交易呈现尿布与啤酒这两项商品被同时购买的交易行为。Confidence(尿布,啤酒)>=70%于此应用范例中的意义为:在所有包含尿布的交易纪录资料中,至少有70%的交易会同时购买啤酒。因此,今后若有某消费者出现购买尿布的行为,超市将可推荐该消费者同时购买啤酒。这个商品推荐的行为则是根据「尿布,啤酒」关联规则,因为就该超市过去的交易纪录而言,支持了“大部份购买尿布的交易,会同时购买啤酒”的消费行为。
从上面的介绍还可以看出,关联规则挖掘通常比较适用与记录中的指标取离散值的情况。如果原始数据库中的指标值是取连续的数据,则在关联规则挖掘之前应该进行适当的数据离散化(实际上就是将某个区间的值对应于某个值),数据的离散化是数据挖掘前的重要环节,离散化的过程是否合理将直接影响关联规则的挖掘结果。
2.2关联规则的分类
按照不同情况,关联规则可以进行分类如下:
1.基于规则中处理的变量的类别,关联规则可以分为布尔型和数值型。
布尔型关联规则处理的值都是离散的、种类化的,它显示了这些变量之间的关系;而数值型关联规则可以和多维关联或多层关联规则结合起来,对数值型字段进行处理,将其进行动态的分割,或者直接对原始的数据进行处理,当然
㈣ 请教:在eviews中如何对上证综合指数进行对数收益的执行命令
在命令窗口中输入
genr dr=log(r)
其中,log()为自然对数,r为指数收益率,dr为对数转换后的新变量
㈤ 股票收盘价和收益率在EVIEWS中用什么表示
股票的收盘价和开盘价是有一个比例关系
㈥ 你好,在用eviews做上证收益率时候,收益率有正有负,怎么做log这个问题困扰我很久了,十分感谢您的帮助
用对数收益率r=ln(x(t)/x(t-1),对数收益率和算术收益率在数值上很接近。从数学性质上看,对数收益率形式可以很方便的应用于几何布朗运动、连续复利(如BS模型)等方面。
㈦ 研究股票指数和汇率、利率的关系,用EVIEWS回归分析可以得到什么有帮助的结果吗
从你的结论来看,是FXE显著影响。看adjusted R-square整体解释力还是很不错的。但是你的observations好少。
㈧ 在Eviews6.0 中建立关于收益率的GARCH模型,是直接导入的收益率数据还是导入收益率方差数据
直接导入收益率数据就可以啦
㈨ 用EVIEWS分析沪深300指数收益率序列
因为回归和garch模型根本就是两个方法,米必要一起比较
我经常帮别人做这类的数据分析的
㈩ eviews软件中有什么检验能和股价相关,pe pb又指什么
想起这个问题的根源,还是说说吧05