股票量化投资收益
A. 什么是量化投资
量化投资指的是一种投资方法,它是指通过数量化方式或计算机程序化发出买卖指令,以得到稳定收益为目标的交易方式。量化投资是一种定性思想的量化应用,它对大量的指标数据进行分析,得出一些有说服力的数据结论,然后通过计算机技术进行数学建模,并进行量化分析,从而得出一个比较契合实际的投资策略。
量化投资是指通过数量化方式及计算机程序化发出买卖指令,以获取稳定收益为目的的交易方式。在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。从全球市场的参与主体来看,按照管理资产的规模,全球排名前四以及前六位中的五家资管机构,都是依靠计算机技术来开展投资决策,由量化及程序化交易所管理的资金规模在不断扩大。
B. 以量化分析方法选股,要怎么算股票收益率
首先建立各个指标在相应分析期内的“增持”/“减持”组合,通过事后检验,统计并分析各指标的“增持”/“减持”组合在分析期内的信息比率与收益率。依据各个指标的“增持”组合的市场表现,判断该指标的选股能力。
“增持”与“减持”组合的构建方法如下:每次选择一个指标,依据该指标对行业内个股进行排序。根据指标代表的经济含义,选择指标排序最优的前 25%的股票设定为“增持”,后 25%的股票设定为“减持”。将“增持”与“减持”股票,按照流通股市值为权重,组成“增持”与“减持”投资组合。投资组合建立后每隔三个月,根据市场最新的指标数据,对“增持”与“减持”组合进行一次重新调整。
1. 经过众多的统计分析研究比较,一些短线投资者认为当随机指标KDJ的K线从下向上穿过D线时,可以买入股票。
2.短线买截的不足之处。从技术分析的角度而言,短线买点都是短线行为在一定时期内,短线买点特别多,同样短线卖点也特别多,因此投资者据此操作,成功的可能性不大。如果考虑到投资者的交易成本投资者根据短线指标操作股票,成功的概率又进一步降低。另外大多数散户由于交易设施的不完备,短线操作也不方便。因此我们建议散户投资者不要轻易用短线的方法买进股票。
3. 短线的交点在决定卖点时,除了前面所讨论的方法外,一些短线投资者常常用随机指标KDJ来决定股票的卖点。由随机指标KDJ的墓木原理知,当随机指标KDJ的K线从上向下穿过D线时,投资者可以卖出股票
我用的牛股宝,里面有个从炒股大赛里面选出来的牛人榜,这个牛股宝里可以跟着牛人买卖操作,这样能跟这这些牛人学习很多知识,牛股宝我觉得不错。你也可以试试。祝你成功。
C. 什么是量化投资交易策略
一文看懂量化投资策略
闲话基
量化投资在近些年受到越来越多的关注,包括规模、策略、业绩。量化投资,是指通过借助统计学、数学方法,运用计算机从海量历史数据中,寻找能够带来超额收益的多种“大概率”策略,按照策略构建的数量模型严格执行投资,力求获得长期稳定可持续高于平均的超额回报。
跨市场策略涉及外汇兑换、国际期货交易对冲,交易实现难度大,国内用得少。
由于期货具有杠杆属性,这类策略持仓的市值往往很大,有时候甚至超过产品资产总值,导致收益率的波动率是所有量化策略中最大的。在市场出现连续震荡行情时,这样策略由于杠杆属性会出现较大的回撤。另外一个对这类策略的一个限制是,目前市场上活跃交易的期货品种不多,高频交易很大程度倚重于品种成交量,开平仓时间间隔较短,使得策略容量不大。
D. 什么是α,β收益,量化投资的策略创建与分析
α收益:一揽子可以自定义低估、同质化并且有波动的股票,不断买入更便宜的,卖出更贵的,从而获得的收益。
例如:几个跟着沪深300的ETF,你发现手中持有的沪深300ETF溢价2%了,而市场上同时存在一个折价1%的ETF,那么就卖出溢价高的沪深300ETF,去买折价的,这样虽然始终持有沪深300ETF,但获得了超越沪深300指数本身的收益,就是α收益。
解释一下同质化:明显所有的沪深300ETF是同质化的,也可以认为最小市值20个股票是同质化的,所有银行股是同质化的,分级A是同质化的。下文中有解释自定义低估。
β收益:基本面本身上涨是β收益。
例如,自定义最小市值的10个股票为一个指数,这些最小市值从5亿涨到20亿,这就是β收益。自定义最低股价10个为一个指数,从牛市的5元跌到2元,那么β收益就是负的
量化策略创建三个步骤:
策略的理论基础
历史回测
找到策略黑天鹅。
(一)策略的理论基础:(大致分为三类):
基本面理论
按基本面又可以分为:1.价值型;2.成长型;3.品质型;按中国特色A股基本面又可以添加;4.小市值型;5.股价型
技术面理论
按技术面又可以分为:1.趋势型,2.趋势反转型,3.缩量反弹,4.指数轮动,5.择时
风险套利
风险套利(或者称轮动):不断买入更便宜的,卖出更贵的。
注意:
有些理论基础并不牢固,并且不能很好解释(这也导致了各种投资流派互相不服)
有些量化跳过了理论基础,直接根据历史统计进行量化(本文不讨论),例如,统计两会前后涨跌,一季度历史表现最好板块
对策略理论的解释:
基本面策略可以定义什么是低估,比如低PE是低估,低市值是低估,低股价是低估,高ROE是低估,高成长是低估;也可以自定义低估,PB*PE是低估,总市值*流通市值小是低估
基本面理论提供了一揽子同质化并且有波动的股票。有些基本面策略的股票间波动较小,例如最低PE股,一段时期内总是那么几个银行股;有些波动较大,比如小市值型
技术面理论有些很难定义什么是低估,比如趋势型;有些则看似可以定义低估,例如,BIAS最小,20日跌幅最大,其实也不是
能自定义低估的策略是风险套利,不能自定义低估的策略是统计
基本面本身能上涨,就获得了β收益
我得出的结论是:风险套利策略的核心是对自定义低估的轮动,即不断获得α收益!!
如何获得α收益:大部分基本面策略的收益是因为风险套利获得的;也就是不断买入更低估的,卖出更贵的;也就是因为调仓周期内因不同股票的波动而产生收益,因此适当缩短周期有利于提高收益;所以在一年内交易次数越多,alpha收益越大(投资大师说的减少交易次数,并不适用于套利)
理论本身获得的β收益并不多,甚至为负(价值型由于近几年市场估值不断降低,不调仓的话,收益是负的)
我们应当寻找的是:基本面理论本身能上涨,且能提供同质化,波动较大的策略(即获得α,又获得β)
统计策略其内在逻辑说服力小,是过去的概率来预测未来
(二)历史回测:回测中最重要一点是:不要欺骗自己
历史回测中要用到一个哲学思想,叫做奥卡姆剃刀:较简单的理论比复杂的理论更好,因为它们更加可检验
改变测试起始时间。调仓周期超过2天的策略,应该试遍每个起始时间,取平均收益,这才最接近策略真实历史回测,因为理论上起始时间变化一两天对策略收益影响是不大的,如果变化很大就说明过度优化。
不要创建静态股票池。历史上每个阶段都有大牛股,完全可以收集大牛股作为股票池,算好调仓周期,每个阶段买最牛的,收益可以美到不敢想象
不要用PE.PB等指标精确逃顶抄底,最多用来确定一个大致范围。每次大顶点位都是不同的,这样的择时毫无意义。
先用25个以上股票测试,确定策略有效性,再减少数量做策略,如果25个测试无效,那么一两个即使收益很好,也该放弃。
改变条件权重。如果稍微改变权重,收益变化很大,那么就降低策略未来预期收益,别指望策略以后会表现这么好。
尽量从07年开始测试。除非你能确定每个时间市场的风格,显然这是不可能的。
同一套择时系统,如果用在策略1上回撤是30%,用在策略2上回撤是15%,你肯定会选择策略2,如果策略1和2本质上是差不多的策略,别太高兴,在未来,策略1和2表现谁好谁坏也是难说的
(三)找到黑天鹅:每个策略都有黑天鹅
价值型,成长型,品质型策略,黑天鹅是过一个季度,可能财务数据完全变了,因此持仓个数不能太少,行业要分开
小市值,低价,低交易额策略,黑天鹅是出现仙股
统计类,技术类策略,黑天鹅是理论本身就不完美
E. 股票量化是什么
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
F. 股票量化交易是什么
量化交易个以前的股票交易本质没有区别,只是提高了工作效率,
量化交易分为量化分析和程序化自动交易
量化分析,如果你是普通散户我现在问几个问题,第一MACD指标默认参数下,在三千多只股票日k上近两年那只收益最好,那只亏损最大。这要人工多大的工作量,如果会写程序代码,几行代码就解决了。在继续如果调换MACD参数能否增加收益用那几个参数是最优组合,这要是人工基本无法完成,计算量太大了,但计算机就很快完成了参数优化。
而且量化分析不是技术分析,例如你问一个价值投资者,三千多家上市公司,你知道有多少家连续10年都没亏损过吗,同样几行代码就知道。
假如你听了一个老师的讲课,说他的牛x战法,普散户听了你只能价单试试,但量化分析我可以在不同市场不同时间周期,不同品种,进行回测严重,优化。这些就是量化分析。
程序化自动交易。
就是利用计算机技术自动交易,这对于散户比较难实现,简单的用第三方然间写几个交易策略可以实现自动交易。
但当你交易上你就会发现,滑点问题,你的速度不够快,需要专线网络,需要底层语言的交易系统,高速的硬件设备。
但散户还是必须要进行量化学习因为这样才能更好的帮助你分析。
下图就是最简单的趋势指标
G. 什么是量化投资
定义:是指通过数理统计分析,选择那些未来回报可能会超越基准的证券进行投资,以期获取超越指数基金收益的基金。
释义:区别于普通基金,量化基金主要采用量化投资策略来进行投资组合管理。总的来说,量化基金采用的策略包括:量化选股、量化择时、股指期货套利、商品期货套利、统计套利、期权套利、算法交易、资产配置等。对于量化基金的产品设计,虽然量化基金一般都是采用多因素模型对股票进行分析和筛选,但不同的量化基金的侧重点是不一样的,也就是包括投资思路、观察角度、分析方法在内都是不同的。
在我国证券市场,基本面研究占主流地位,然而随着证券市场的不断发展、证券数目的增加、衍生品的出现等,基金要想战胜指数的难度也越来越大,量化投资则开始发挥越来越重要的作用,因此我国也涌现出了大批量化基金。
H. 国内股票的量化投资策略有哪些,特别是基本面量化
柠檬给你问题解决的畅快感觉!主要的量化对冲策略有:1、市场中性策略 主要追求的是通过各类对冲手段消除投资组合的大部分或全部系统风险,寻找市场中的相近资产的定价偏差,利用价值回归理性的时间差,在市场中赚取细小的差价来获得持续的收益。2、事件驱动套利策略 利用特殊事件造成的对资产价格的错误定价,从错误定价中谋利。3、相对价值策略 主要是利用证券资产间相对的价值偏差进行获利。感觉畅快?别忘了点击采纳哦!