当前位置:首页 » 股票投资 » python股票量化投资有用吗

python股票量化投资有用吗

发布时间: 2021-05-09 06:44:26

❶ 量化投资中用python主要是负责什么

python作为一门编程语言,简单说它在量化投资主要是进行量化策略模型的编译。

❷ 量化交易系统可以用到股票上吗

当然可以,而且是任何交易者都可以使用量化交易技术,股票交易数据是很容易采集的,就是分析起来比较麻烦,如果题主是职业散户,美股研究社更建议使用一些软件炒股辅助,策略炒股通主要对有量化思路但又没有编程能力的散户非常试用。它量化了所有股票数据数据,而且还提供多因子策略模型供用户建立自己的策略,通过手机点选就能实现,非常好用。

❸ 量化交易真的有作用吗

我从另个方面理解你的这个问题,如果有什么认识错误的我们在沟通。
1、量化交易能赚钱吗?
能。从量化交易其中的三个特点谈一谈。系统性、套利思想、和概率取胜。目前A股有3000多支股票,必然是存在错误定价、错误估值。如果单纯通过人力来索搜这个机会,当然也是能找出的,但其中的人力代价必然是高昂。相反,通过量化交易就能发现这个机会。问题就回到了套利可以赚钱吗?不一定每一笔都能,但长期来看必然是能的(获得超额收益)

2、量化交易相对其他方式能有什么优势?
纪律性。

目前,国内量化交易平台公司已经都发展不错了,给人耳目一新的便是Ricequant,从编程体验、数据、API来说,都能满足用户的研究、投资需求。现Ricequant量化已加入实时模拟 ( Paper Trading ) ,并在不久的将来加入实盘交易。国内的有一家平台,它的像素级的拷贝,圈内人也是人尽皆知的,不提也罢。

❹ 股票量化交易有用吗哪一家做的比较好

现在市面上的量化交易APP大多是分析软件,真正能够直接参与交易的很少。相对于人性操作来说,量化交易刨除人性,做计划之内的事情。真正意义上实现价值投资,比纯人为的追涨杀跌要好很多。
我用过的壳子量化这个软件还是不错的,他里面有多个模型,可以自己选择。针对新人,里面支持模拟,可以先使用模拟盘体验一下量化交易带来的不同。

❺ 量化投资 用python好 还是c++

Python是非常适合做quant类工作的语言,本身就是科学计算方面的统治级语言,现在加入了IPython,pandas等重量级神器,为Quant类工作量身定做,而且仍在飞速发展中,以后会越来越重要。

关于其他语言,首先介绍一下我自己最喜欢的一个比较小众的组合,Mathematica+Java/Scala。 Mathematica的优点在于:本身提供函数式的编程语言,表达能力非常强大,比如Map/Rece是标配,很多时候不需要去做烦人的for循环或下标控制,排版经常可以直接照数学公式原样输入,即直观又不容易写错;代码和输出混排的排版方式使得建模时的演算和推理过程非常流畅,甚至还可以直接生成动画,对于找直观理解非常有帮助(这几点分别被IPython和R偷师了一部分)。Mathematica的缺点在于对金融类的时间序列数据没有很好的内建支持,使得存储和计算都会比较低效,因此需要用内嵌Java的方式来补足,对于数据格式或性能敏感的操作都可以用Java/Scala实现。这个组合在我心目中无出其右,不论是快速建模,还是建模转生产,都远远领先于其他选择。但Mathematica的商用授权很贵,如果公司本身不认可的话很难得到支持,这是最致命的缺陷。另外随着Python系的逐渐成熟,领先优势在逐渐缩小,长远看Python的势头更好一些。

其他答案里也列举了不少其他语言,我自己既做Quant的工作,也做软件开发的工作,这里想从一个软件工程师的角度,说说我的理解。平时工作中会和一些偏Quant背景的人合作,很容易发现建模能力好的人往往在计算机方面基础比较薄弱(因为以前的训练重点不在这里)。他们也可以快速学习掌握一种像C++,Java这样的语言,实现很多必要的功能。但是一方面这些语言陡峭的学习曲线和繁琐的开发步骤会给他们真正要做的工作增加不必要的负担,另一方面一旦涉及到性能敏感的情景,他们对计算机体系结构缺乏理解的缺点就容易暴露,比如说很可能他们没有计算复杂度,内存碎片,cache miss,甚至多线程等概念,导致写出的程序存在相当大的隐患。

即使是计算机功底扎实,如果每天的工作需要在C++,Python,R/Matlab,甚至一众脚本语言之前来回切换,思维负担也会非常重,人的精力是有限的,很难同时兼顾数学建模和底层代码调试这种差距巨大的工作。长期发展下去最可能的结果就是要么远离建模,专心做生产环境开发,要么远离生产环境,专心建模。这种局面显然不论对个人还是团队都是有很大弊端的。

如果深入思考这个问题,相信不难得出结论,对于Quant来说,C++这种相当面向机器的语言肯定不是最佳选择。的确在历史上,它比更面向机器的C已经友好了很多,但是在计算机技术飞速发展的今天,如果还需要Quant大量使用C++做建模类的工作显然是很遗憾的事情。设想一下你拿到一份股票数据,不论你是想分析价格走势,成交量分布,还是波动性,第一件要做的事一定是画出图来看看,有一个直观认识。如果你的工具是C++,肯定有很多时间花在编译,调试,再编译的过程上,好容易能解析文件了,接下来怎么算移动平均?怎么算波动性?全都要自己写代码。再然后怎么画图?这整个工作流简直惨不忍睹,这些问题浪费掉你大部分精力,而他们全部和你真正感兴趣的工作毫无关系。所以如果你是一个数理金融等背景的新人打算开始Quant生涯,在决定是否要投资到这项重量级技术上时需要慎重,即便它目前的市场定价可能仍在峰值。相比之下我认为Python会是更理想的选择,即能很好的完成建模工作,也可以训练一定的编程技巧,使你在必要时也能胜任一些简单的C++工作。

最后同意 @袁浩瀚,不要拘泥于语言,不论学习那一种,对其他的语言还是要抱有开放的心态。另外世界变化很快,你会发现单一的语言分类方式其实是没有意义的,每一门语言在发展过程中都会逐渐吸收其他语言的特性,比如Python本身就既有C/C++/Java那样命令式的特点,也有函数式的特点,像pandas甚至还提供类似SQL的使用方式,在其他语言或系统里也都或多或少包含了不同的特点,可以在学习过程里慢慢体会。

❻ 股票量化交易系统有用吗

股市是一门经济学,哲学,概率学,心理学的综合体,想要成功,需要不断去感悟去总结每一次的失败,这样才能走的更好更远。

第一个理念:

顺势而为

股市的大趋势决定个股的走势,当指数大涨时个股更容易爆发,这个时候适合重仓介入,当然要注意获利就出;当市场处于弱势时,就要考虑轻仓介入,不盲目追涨。

第二个理念:

选定有价值的公司

在投资中,选定有价值的公司很重要,因为这些公司有很强的上涨潜力,一旦市场有好的信号,或者公司有大利好时,股价就会飞速上涨,所以这样的公司更容易让普通股民赚到钱。

第三个理念:

分批建仓 坚持到底

在投资中,投资者要住的是要做好投资策略,一般的策略就是分批建仓,在市场下跌时以倒金字塔形态建仓,在市场上涨时,以金字塔形态减仓。如果股票短期被套,市场情况还可以的话,则要选择坚持持仓。

天字一号量化交易系统通过设定不同的各种指标条件,一旦市场交易情况满足这些条件时就自动弹出一些操作指示;设定值达到开仓条件,系统会弹出买入信号、设定值达到减仓条件卖出一半或者全部卖出等。

❼ 有没有人在学python做量化交易的

推荐一些书籍
1 像计算机科学家一样思考Python
2 [Python标准库].Doug.Hellmann.扫描版
3《Python科学计算》.(张若愚)
4 用Python做科学计算
5 利用Python进行数据分析
6 Python数据分析基础教程:NumPy学习指南(第2版)
7 NumPy攻略
7 Python科学计算与数据分析
8 A Practical Guide To Quantitative Portfolio Trading
9 Data Structures and Algorthms Using Python
10 Mastering Python for Finance

计量经济学
1 金融计量学从初级 到 高级建模技术
2 哈佛教材 应用计量经济学 stata
3 高等计量经济学 李子奈等编着
4 Analysis of Financial Time Series- Financial Econometrics(2002)金融时序分析
5 Phoebus J. Dhrymes, Mathematics for Econometrics, 4e
6 Osborne,Rubinstein-A Course in Game Theory
7 Model Building in Mathematical Programming(5e)
8 Hayashi - Econometrics
9 Gujarati-Essentials of Econometrics计量精要
10 Akira Takayama - Mathematical Economics

❽ 用python做量化交易要学多久

5个月。

python凭借其突出的语言优势与特性,已经融入到各行各业的每个领域。一般来说,python培训需要脱产学习5个月左右,这样的时长才能够让学员既掌握工作所需的技能,还能够积累一定的项目经验。当然如果你想要在人工智能的路上越走越远,则需要不断的积累和学习。

python培训的5个月时间里,有相当大一部分时间是在实战做项目,第一阶段是为期一个月学习python的核心编程,主要是python的语言基础和高级应用,帮助学员获得初步软件工程知识并树立模块化编程思想。学完这一阶段的内容,学员已经能够胜任python初级开发工程师的职位。

(8)python股票量化投资有用吗扩展阅读:

Python开发基础课程内容包括:计算机硬件、操作系统原理、安装linux操作系统、linux操作系统维护常用命令、Python语言介绍、环境安装、基本语法、基本数据类型、二进制运算、流程控制、字符编码、文件处理、数据类型、用户认证、三级菜单程序、购物车程序开发、函数、内置方法、递归、迭代器、装饰器、内置方法、员工信息表开发、模块的跨目录导入、常用标准库学习,b加密 e正则logging日志模块等,软件开发规范学习,计算器程序、ATM程序开发等。

❾ 可以不通过平台自己用Python写量化交易策略吗

在哪?可以啊,只要有你有能力,你怎么学都可以

❿ python的量化代码怎么用到股市中

2010 ~ 2017 沪深A股各行业量化分析

在开始各行业的量化分析之前,我们需要先弄清楚两个问题:

  • 第一,A股市场上都有哪些行业;

  • 第二,各行业自2010年以来的营收、净利润增速表现如何?

  • 第一个问题
    很好回答,我们使用JQData提供的获取行业成分股的方法,输入get_instries(name='sw_l1')
    得到申万一级行业分类结果如下:它们分别是:【农林牧渔、采掘、化工、钢铁、有色金属、电子、家用电器、食品饮料、纺织服装、轻工制造、医药生物、公用事业、交通运输、房地产、商业贸易、休闲服务、综合、建筑材料、建筑装饰、电器设备、国防军工、计算机、传媒、通信、银行、非银金融、汽车、机械设备】共计28个行业。

    第二个问题
    要知道各行业自2010年以来的营收、净利润增速表现,我们首先需要知道各行业在各个年度都有哪些成分股,然后加总该行业在该年度各成分股的总营收和净利润,就能得到整个行业在该年度的总营收和总利润了。这部分数据JQData也为我们提供了方便的接口:通过调用get_instry_stocks(instry_code=‘行业编码’, date=‘统计日期’),获取申万一级行业指定日期下的行业成分股列表,然后再调用查询财务的数据接口:get_fundamentals(query_object=‘query_object’, statDate=year)来获取各个成分股在对应年度的总营收和净利润,最后通过加总得到整个行业的总营收和总利润。这里为了避免非经常性损益的影响,我们对净利润指标最终选取的扣除非经常性损益的净利润数据。

    我们已经获取到想要的行业数据了。接下来,我们需要进一步分析,这些行业都有什么样的增长特征。

    我们发现,在28个申万一级行业中,有18个行业自2010年以来在总营收方面保持了持续稳定的增长。它们分别是:【农林牧渔,电子,食品饮料,纺织服装,轻工制造,医药生物,公用事业,交通运输,房地产,休闲服务,建筑装饰,电气设备,国防军工,计算机,传媒,通信,银行,汽车】;其他行业在该时间范围内出现了不同程度的负增长。

    那么,自2010年以来净利润保持持续增长的行业又会是哪些呢?结果是只有5个行业保持了基业长青,他们分别是医药生物,建筑装饰,电气设备,银行和汽车。(注:由于申万行业在2014年发生过一次大的调整,建筑装饰,电气设备,银行和汽车实际从2014年才开始统计。)

    从上面的分析结果可以看到,真正能够保持持续稳定增长的行业并不多,如果以扣非净利润为标准,那么只有医药生物,建筑装饰,电气设备,银行和汽车这五个行业可以称之为优质行业,实际投资中,就可以只从这几个行业中去投资。这样做的目的是,一方面,能够从行业大格局层面避免行业下行的风险,绕开一个可能出现负增长的的行业,从而降低投资的风险;另一方面,也大大缩短了我们的投资范围,让投资者能够专注于从真正好的行业去挑选公司进行投资。

「2010-2017」投资于优质行业龙头的收益表现

选好行业之后,下面进入选公司环节。我们知道,即便是一个好的行业也仍然存在表现不好的公司,那么什么是好的公司呢,本文试图从营业收入规模和利润规模和来考察以上五个基业长青的行业,从它们中去筛选公司作为投资标的。

3.1按营业收入规模构建的行业龙头投资组合

首先,我们按照营业收入规模,筛选出以上5个行业【医药生物,建筑装饰,电气设备,银行和汽车】从2010年至今的行业龙头如下表所示:

结论

通过以上行业分析和投资组合的历史回测可以看到:

  • 先选行业,再选公司,即使是从2015年股灾期间开始投资,至2018年5月1号,仍然能够获得相对理想的收益,可以说,红杉资本的赛道投资法则对于一般投资者还是比较靠谱的。

  • 在构建行业龙头投资组合时,净利润指标显著优于营业收入指标,获得的投资收益能够更大的跑赢全市场收益率

  • 市场是不断波动的,如果一个投资者从股灾期间开始投资,那么即使他买入了上述优质行业的龙头组合,在近3年也只能获得12%左右的累计收益;而如果从2016年5月3日开始投资,那么至2018年5月2日,2年时间就能获得超过50%以上的收益了。所以,在投资过程中选择时机也非常重要。

出自:JoinQuant 聚宽数据 JQData

热点内容
股票交易明细里s代表什么 发布:2025-06-16 21:38:39 浏览:459
银行理财产品净值与利率如何换算 发布:2025-06-16 21:24:03 浏览:573
茅台股票历史最高价格表 发布:2025-06-16 21:16:07 浏览:447
同一控制股权转让要交什么税 发布:2025-06-16 21:13:56 浏览:765
天悦基金代码是多少 发布:2025-06-16 21:13:45 浏览:343
欧菲科技是哪里的股票 发布:2025-06-16 20:58:03 浏览:489
模塑科技股票价格 发布:2025-06-16 20:22:11 浏览:561
上海立信会计金融代号是多少 发布:2025-06-16 20:06:50 浏览:770
股权变更怎么弄 发布:2025-06-16 20:06:49 浏览:960
金风科技股票公告 发布:2025-06-16 19:25:23 浏览:813