投资组合风险和股票数量
A. 根据分散化投资的原理,一个投资组合中所包含的股票越多,风险越小
那是不会做的人才要分散风险,因为他不懂的分析那只股票的好坏,所以只好扩大攻击面积了
B. 三种股票投资组合风险计算
整个投资组合的方差 =0.3*0.3*100+0.3*0.3*144+0.4*0.4*169+2*0.3*0.3*120+2*0.3*0.4*130+2*0.3*0.4*156 = 139.24
三个股票的投资组合方差=w1*w1*股票1的方差+w2*w2*股票2的方差+w3*w3*股票3的方差+ 2*w1*w2*股票1和2的协方差+2*w1*w3*股票1和3的协方差+2*w2*w3*股票2和3的协方差
C. 股票投资组合是什么
股票投资组合,是指投资者在进行股票投资时,根据各种股票的风险程度、获利能力等方面的因素,按照一定的规律和原则进行股票的选择、搭配以降低投资风险的一种方法。其理论依据就是股市内各类股票的涨跌一般不是同步的,总是有涨有跌,此起彼伏。因此,当在一种股票上的投资可能因其价格的暂时跌落而不能盈利时,还可以在另外一些有涨势的股票上获得一定的收益,从而可以达到回避风险的目的。应当明确的是,这一种方法只适用于资金投入量较大的投资者。
股票投资管理是资产管理的重要组成部分之一。股票投资组合管理的目标就是实现效用最大化,即使股票投资组合的风险和收益特征能够给投资者带来最大的满足。因此,构建股票投资组合的原因有二:一是为降低证券投资风险;二是为实现证券投资收益最大化。
组合管理是一种区别于个别资产管理的投资管理理念。组合管理理论最早由马柯威茨于1952年系统地提出,他开创了对投资进行整体管理的先河。目前,在西方国家大约有1/3的投资管理者利用数量化方法进行组合管理。构建投资组合并分析其特性是职业投资组合经理的基本活动。在构建投资组合过程中,就是要通过证券的多样化,使由少量证券造成的不利影响最小化。
一、分散风险
股票与其他任何金融产品一样,都是有风险的。所谓风险就是指预期投资收益的不确定性。我们常常会用篮子装鸡蛋的例子来说明分散风险的重要性。如果我们把鸡蛋放在一个篮子里,万一这个篮子不小心掉在地上,那么所有的鸡蛋都可能被摔碎;而如果我们把鸡蛋分散在不同的篮子里,那么一个篮子掉了不会影响其他篮子里的鸡蛋。资产组合理论表明,证券组合的风险随着组合所包含的证券数量的增加而降低,资产间关联性低的多元化证券组合可以有效地降低个别风险。
我们一般用股票投资收益的方差或者股票的p值来衡量一只股票或股票组合的风险。通常股票投资组合的方差是由组合中各股票的方差和股票之间的协方差两部分组成,组合的期望收益率是各股票的期望收益率的加权平均。除去各股票完全正相关的情况,组合资产的标准差将小于各股票标准差的加权平均。当组合中的股票数目N增加时,单只股票的投资比例减少,方差项对组合资产风险的影响下降;当N趋向无穷大时,方差项将档近0,组合资产的风险仅由各股票之间的协方差所决定。也就是说,通过组合投资,能够减少直至消除各股票自身特征所产生的风险(非系统性风险),而只承担影响所有股票收益率的因素所产生的风险(系统性风险)。
二、实现收益最大化
股票投资组合管理的目标之一就是在投资者可接受的风险水平内,通过多样化的股票投资使投资者获得最大收益。从市场经验来看,单只股票受行业政策和基本面的影响较大,相应的收益波动往往也很大。在公司业绩快速增长时期可能给投资者带来可观的收益,但是如果因投资者未观察到的信息而导致股票价格大幅下跌,则可能给投资者造成很大的损失。因此,在给定的风险水平下,通过多样化的股票选择,可以在一定程度上减轻股票价格的过度波动,从而在一个较长的时期内获得最大收益。
D. 投资风险与股市风险系数(β系数),标准差和期望值的关系
标准差和β是衡量证券风险的两个指标,侧重不同。
标准差强调的是证券自身的波动,波动越大,标准差越大,是绝对的波动的概念;
证券A的标准差比证券B小,我们说,证券A的整体波动风险比较小,证券B的整体波动风险比较大。标准差中,既包含了市场风险,又包含了该证券的特异风险,specificrisk。
相反,β强调的是相对于整个市场(M),这个证券的波动大小,是以整个市场为参照物的。
当市场波动1个百分点时,证券A波动1.25个百分点,所以我们说,证券A的市场风险较大;证券B相对市场,则波动0.95个百分点,我们说,证券B的市场风险较小。
(4)投资组合风险和股票数量扩展阅读:
防范对策
防范并化解财务风险。以实现财务管理目标,是企业财务管理的工作重点。
(1)认真分析财务管理的宏观环境及其变化情况,提高适应能力和应变能力。为防范财务风险,企业应对不断变化的财务管理宏观环境进行认真分析研究,把握其变化趋势及规律,并制定多种应变措施,适时调整财务管理政策和改变管理方法。
(2)不断提高财务管理人员的风险意识。必须将风险防范贯穿于财务管理工作的始终。
(3)提高财务决策的科学化水平。防止因决策失误而产生的财务风险。在决策过程中。应充分考虑影响决策的各种因素,尽量采用定量计算及分析方法并运用科学的决策模型进行决策。对各种可行方案要认真进行分析评价。从中选择最优的决策方案,切忌主观臆断。
(4)理顺企业内部财务关系,做到责、权、利相统一。要明确各部门在企业财务管理中的地位、作用及应承担的职责,并赋予其相应的权力,真正做到权责分明,各负其责。
E. 投资组合的系统风险怎么算
题主您好,之了很高兴为您解答!
系统风险就是指整个市场都具有,而不单是单个股票特有的风险。投资组合只能分散非系统风险,而系统风险是没有办法降低的。β系数用于衡量系统风险
投资组合的系统风险公式
希望能够帮助您,我是之了,您的会计挚友!望采纳!免费领取2019初级会计全套+实操+注会预科班课程,欢迎一起探讨会计问题,不定期分享干货哦~
F. 证券组合投资的收益与风险计算
β系数在证券投资中的应用
06级金融班 冷松
β系数常常用在投资组合的各种模型中,比如马柯维茨均值-方差模型、夏普单因素模型(Shape Single-Index Model)和多因素模型。具体来说,β系数是评估一种证券系统性风险的工具,用以量度一种证券或一个投资证券组合相对于总体市场的波动性,β系数利用一元线性回归的方法计算。
(一)基本理论及计算的意义
经典的投资组合理论是在马柯维茨的均值——方差理论和夏普的资本资产定价模型的基础之上发展起来的。在马柯维茨的均值——方差理论当中是用资产收益的概率加权平均值来度量预期收益,用方差来度量预期收益风险的:
E(r)=∑p(ri) ri (1)
σ2=∑P(ri)[ri—E(r)]2 (2)
上述公式中p(ri)表示收益ri的概率,E(r)表示预期收益,σ2表示收益的风险。夏普在此基础上通过一些假设和数学推导得出了资本资产定价模型(CAPM):
E(ri)=rf +βi [E(rM)—rf] (3)
公式中系数βi 表示资产i的所承担的市场风险,βi=cov(r i , r M)/var(r M) (4)
CAPM认为在市场预期收益rM 和无风险收益rf 一定的情况下,资产组合的收益与其所分担的市场风险βi成正比。
CAPM是基于以下假设基础之上的:
(1)资本市场是完全有效的(The Perfect Market);
(2)所有投资者的投资期限是单周期的;
(3)所有投资者都是根据均值——方差理论来选择有效率的投资组合;
(4)投资者对资产的报酬概率分布具有一致的期望。
以上四个假设都是对现实的一种抽象,首先来看假设(3),它意味着所有的资产的报酬都服从正态分布,因而也是对称分布的;投资者只对报酬的均值(Mean)和方差(Variance)感兴趣,因而对报酬的偏度(Skewness)不在乎。然而这样的假定是和实际不相符的!事实上,资产的报酬并不是严格的对称分布,而且风险厌恶型的投资者往往具有对正偏度的偏好。正是因为这些与现实不符的假设,资本资产定价模型自1964年提出以来,就一直处于争议之中,最为核心的问题是:β系数是否真实正确地反映了资产的风险?
如果投资组合的报酬不是对称分布,而且投资者具有对偏度的偏好,那么仅仅是用方差来度量风险是不够的,在这种情况下β系数就不能公允的反映资产的风险,从而用CAPM模型来对资产定价是不够理想的,有必要对其进行修正。
β系数是反映单个证券或证券组合相对于证券市场系统风险变动程度的一个重要指标。通过对β系数的计算,投资者可以得出单个证券或证券组合未来将面临的市场风险状况。
β系数反映了个股对市场(或大盘)变化的敏感性,也就是个股与大盘的相关性或通俗说的"股性",可根据市场走势预测选择不同的β系数的证券从而获得额外收益,特别适合作波段操作使用。当有很大把握预测到一个大牛市或大盘某个不涨阶段的到来时,应该选择那些高β系数的证券,它将成倍地放大市场收益率,为你带来高额的收益;相反在一个熊市到来或大盘某个下跌阶段到来时,你应该调整投资结构以抵御市场风险,避免损失,办法是选择那些低β系数的证券。为避免非系统风险,可以在相应的市场走势下选择那些相同或相近β系数的证券进行投资组合。比如:一支个股β系数为1.3,说明当大盘涨1%时,它可能涨1.3%,反之亦然;但如果一支个股β系数为-1.3%时,说明当大盘涨1%时,它可能跌1.3%,同理,大盘如果跌1%,它有可能涨1.3%。β系数为1,即说明证券的价格与市场一同变动。β系数高于1即证券价格比总体市场更波动。β系数低于1即证券价格的波动性比市场为低。
(二)数据的选取说明
(1)时间段的确定
一般来说对β系数的测定和检验应当选取较长历史时间内的数据,这样才具有可靠性。但我国股市17年来,也不是所有的数据均可用于分析,因为CAPM的前提要求市场是一个有效市场:要求股票的价格应在时间上线性无关,而2006年之前的数据中,股份的相关性较大,会直接影响到检验的精确性。因此,本文中,选取2005年4月到2006年12月作为研究的时间段。从股市的实际来看,2005年4月开始我国股市摆脱了长期下跌的趋势,开始进入可操作区间,吸引了众多投资者参与其中,而且人民币也开始处于上升趋势。另外,2006年股权分置改革也在进行中,很多上市公司已经完成了股改。所以选取这个时间用于研究的理由是充分的。
(2)市场指数的选择
目前在上海股市中有上证指数,A股指数,B股指数及各分类指数,本文选择上证综合指数作为市场组合指数,并用上证综合指数的收益率代表市场组合。上证综合指数是一种价值加权指数,符合CAPM市场组合构造的要求。
(3)股票数据的选取
这里用上海证券交易所(SSE)截止到2006年12月上市的4家A股股票的每月收盘价等数据用于研究。这里遇到的一个问题是个别股票在个别交易日内停牌,为了处理的方便,本文中将这些天该股票的当月收盘价与前一天的收盘价相同。
(4)无风险收益(rf)
在国外的研究中,一般以3个月的短期国债利率作为无风险利率,但是我国目前国债大多数为长期品种,因此无法用国债利率作为无风险利率,所以无风险收益率(rf)以1年期银行定期存款利率来进行计算。
(三)系数的计算过程和结果
首先打开“大智慧新一代”股票分析软件,得到相应的季度K线图,并分别查询鲁西化工(000830),首钢股份(000959),宏业股份(600128)和吉林敖东(000623)的收盘价。打开Excel软件,将股票收盘价数据粘贴到Excel中,根据公式:月收益率=[(本月收盘价-上月收盘价)/上月收盘价]×100%,就可以计算出股票的月收益率,用同样的方法可以计算出大盘收益率。将股票收益率和市场收益率放在同一张Excel中,这样在Excel表格中我们得到两列数据:一列为个股收益率,另一列为大盘收益率。选中某一个空白的单元格,用Excel的“函数”-“统计”-“Slope()函数”功能,计算出四支股票的β系数。
下面列示数据说明:
鲁西化工000830 首钢股份000959 弘业股份600128 吉林敖东000623 上证 市场收益率 市场超额收益率 市场无风险收益率
统计时间 收盘价 收益率 超额 收盘价 收益率 超额 收盘价 收益率 超额 收盘价 收益率 超额 指数
收益率 收益率 收益率 收益率
05年4月 4.51 基期 3.77 基期 3.29 基期 4.69 基期 1159.14
05年5月 3.81 -6.23% -8.65% 3.68 7.54% 5.12% 3.48 4.53% 2.11% 7.02 -7.77% -10.19% 1060.73 -2.56% -4.98% 2.42%
05年6月 3.98 8.33% 5.91% 3.35 -18.39% -20.81% 3.3 4.39% 1.97% 8.49 15.07% 12.65% 1080.93 8.03% 5.61% 2.42%
05年7月 4.76 -9.07% -11.49% 3.12 -13.10% -15.52% 3.02 -30.67% -33.09% 9.96 -11.30% -13.72% 1083.03 -8.72% -11.14% 2.42%
05年8月 3.33 -19.28% -21.70% 3.57 -12.97% -15.39% 4.11 -16.93% -19.35% 8.17 -0.87% -3.29% 1162.79 -14.16% -16.58% 2.42%
05年9月 3.45 -2.71% -5.03% 3.35 8.19% 5.87% 3.73 13.08% 10.76% 9.86 36.64% 34.32% 1155.61 11.26% 8.94% 2.32%
05年10月 3.32 -7.62% -9.94% 3.15 -10.33% -12.65% 3.51 4.66% 2.34% 8.17 27.03% 24.71% 1092.81 -1.63% -3.95% 2.32%
05年11月 3.46 -15.45% -17.77% 2.41 -9.21% -11.53% 3.38 -18.34% -20.66% 9.86 -1.68% -4.00% 1099.26 -8.00% -10.32% 2.32%
05年12月 3.48 3.41% 1.09% 2.46 -8.88% -11.20% 3.39 10.49% 8.17% 16.55 17.79% 15.47% 1161.05 9.50% 7.18% 2.32%
06年1月 3.6 45.66% 43.14% 2.75 23.67% 21.15% 3.86 3.13% 0.61% 19.25 8.28% 5.76% 1258.04 16.34% 13.82% 2.52%
06年2月 4.67 -57.66% -60.18% 2.79 -12.57% -15.09% 3.75 -19.06% -21.58% 21.73 -42.86% -45.38% 1299.03 -19.66% -22.18% 2.52%
06年3月 4.57 9.47% 6.95% 3.05 0.43% -2.09% 2.95 -3.41% -5.93% 24.51 -8.22% -10.74% 1298.29 -0.18% -2.70% 2.52%
06年4月 2.65 -5.54% -8.06% 2.96 -7.26% -9.78% 3.28 -17.55% -20.07% 50.00 -39.26% -41.78% 1440.22 -9.32% -11.84% 2.52%
06年5月 3.22 -0.23% -3.60% 2.8 -13.13% -16.50% 3.81 -1.14% -4.51% 65.34 -9.05% -12.42% 1641.3 -6.73% -10.10% 3.37%
06年6月 3.37 -21.41% -24.78% 2.84 -5.57% -8.94% 3.69 10.55% 7.18% 49.75 -0.46% -3.83% 1672.21 -8.49% -11.86% 3.37%
06年7月 3.48 21.26% 17.89% 2.91 4.21% 0.84% 4.48 8.50% 5.13% 62.3 20.00% 16.63% 1612.73 6.91% 3.54% 3.37%
06年8月 3.37 3.70% 0.33% 2.97 -8.36% -11.73% 4.78 17.47% 14.10% 74.1 -35.85% -39.22% 1658.63 0.47% -2.90% 3.37%
06年9月 3.27 14.29% 11.15% 3.13 -17.94% -21.08% 4.73 11.38% 8.24% 7.01 5.44% 2.30% 1752.42 11.82% 8.68% 3.14%
06年10月 3.17 67.50% 64.36% 3.41 10.75% 7.61% 4.39 -18.97% -22.11% 91.28 67.91% 64.77% 1837.99 28.80% 25.66% 3.14%
06年11月 3.12 -32.71% -35.85% 4.35 -4.21% -7.35% 4.2 58.86% 55.72% 60.02 -11.09% -14.23% 2099.29 4.80% 1.66% 3.14%
06年12月 3.16 24.21% 21.07% 5.01 22.30% 19.16% 4.43 52.43% 49.29% 68.28 56.81% 53.67% 2675.47 52.67% 49.53% 3.14%
鲁西化工(000830)的β系数=0.89
首钢股份(000959)的β系数=1.01
弘业股份(600128)的β系数=0.78
吉林敖东(000623)的β系数=1.59
(三)结论
计算出来的β值表示证券的收益随市场收益率变动而变动的程度,从而说明它的风险度,证券的β值越大,它的系统风险越大。β值大于0时,证券的收益率变化与市场同向,即以极大可能性,证券的收益率与市场同涨同跌。当β值小于0时,证券收益率变化与市场反向,即以极大可能性,在市场指数上涨时,该证券反而下跌;而在市场指数下跌时,反而上涨。(在实际市场中反向运动的证券并不多见)
根据上面对四只股票β值的计算分析说明:首钢股份和吉林敖东的投资风险大于市场全部股票的平均风险;而鲁西化工和宏业股份的投资风险小于市场全部股票的平均风险。那我们在具体的股票投资过程中就可以利用不同股票不同的β值进行投资的决策,一般来说,在牛市行情中或者短线交易中我们应该买入β系数较大的股票,而在震荡市场中或中长线投资中我们可以选取β值较小的股票进行风险的防御。
G. 投资组合风险问题
你的问题着实比较绕人。
我的理解:
(1)证券报酬率的标准差与市场的标准差确实都包含了系统风险和非系统风险造成的影响。但是,别忘了,贝塔系数是证券报酬率的标准差/市场的标准差*证券与市场的相关系数。
可以这么理解,这里的相关系数,剔除了非系统风险的影响。
因为,例如,(a,b)证券组合的方差为SD(a)^2+SD(b)^2+2SD(a)*SD(b)*相关系数ρ,正是因为相关系数ρ的存在,使得(a,b)证券组合的标准差小于等于a的标准差+b的标准差。而(a,b)的证券组合的风险,在a,b不完全正相关的情况下,显然已经抵销了ab之间的部分非系统风险,所以,这个组合的标准差才会小于单个证券a和b的标准差。而这个小于的量在公式中,就是通过相关系数ρ来体现的。所以,可以认为,贝塔系数的公式中,正是因为相关系数因子ρ的存在,剔除了非系统风险的影响。
(2)你这里是一种特殊情况。即a和b的相关系数为-1,也就是说,两种证券完全负相关。而这种完全负相关在现实中是几乎不存在的,因为它假设系统风险为零。而实际中,是存在系统风险与非系统风险的,完全负相关与完全正相关都是特例。
在不存在系统风险的情况下,两种证券才可能完全负相关,才可能存在权重x、y,使得组合的标准差为零。此时,组合是没有风险,因为非系统风险已被抵销,而系统风险又不存在(即为0)。但这只是特例,实际是不存在系统风险为0 的证券组合的,这个特例并不能说明投资组合能分散系统风险,因为此时系统风险本身为0,谈不上风险被分散的问题。
探讨。
H. 根据分散化投资的原理,一个投资组合中,所包含的股票越多,风险越小。对吗
原则上是这样的,但是越分散越像指数,收益也不可能太高,如果是股灾,千股跌停,一样不少亏。还不如直接买指数基金,不用这么麻烦。希望采纳。
I. 投资组合理论认为不同股票的投资组合可以降低风险,股票的种类越多,风险越小,对吗
股票的种类多到一定规模,增加股票种类不会降低风险。
非系统性风险可以通过投资组合降低,
系统性风险不能通过投资组合降低。
J. 投资组合的风险都有哪些
1.财务风险:公司经营不善、财务状况不佳会使股票价值下跌或无法分得股利,或使公司债券持有人无法收回本利。
2.市场风险:投资股票、期货时,市场行情波动会使持有的股票、期货合约的价格随之变动而造成损失。
3.通货膨胀风险:通货膨胀会使钱变薄,失去原有的购买力。通胀加剧时对金融性资产的影响最大。但不动产和黄金等的抗通胀性则好得多。
4.利率风险:例如投资债券时,利率上升使债券价值下跌,造成损失。