数学建模股票投资问题背景
『壹』 数学建模 投资问题论文
以前帮一个人做过,现在找不到了,是用优化模型解得,matlab和lindo都可以。
『贰』 数学建模 股票问题
(1)年风险不高于40元
风险系数没有,那就是没有风险?
(2)年收益不低于10元
既然没有风险,品种A每股年收益0.5那就买10/0.5+1,收益肯定超10元
(3)购买股票B不少于7股
品种A就已经超10元了,品种B随便买吧!
这道题有问题吧?
『叁』 基金公司投资问题数学建模
您的回答会被数十乃至数万的网友学习和参考,所以请一定对自己的回答负责,尽可能保障您的回答准确、详细和有效
『肆』 证券投资问题 数学建模
『伍』 数学建模中的问题背景怎么写
复述问题,并且初步进行分析,将一些建模中涉及的一些假设的原因写在背景这一部分,这样在假设这一部分就可以不用再做解释了。还可以在背景部分将问题简单化,规避掉一些不重要或者复杂的因素,突出模型部分。
『陆』 数学建模投资问题,急需!!
活期+不确定的银行短期理财,信用没问题的话,无风险
『柒』 最佳投资问题(数学建模)
问题(1)分析 问题分析 这个优化问题的目标是有价证券回收的利息为最高,要做的决策是投资计划。即应购买的各种证券的数量的分配。综合考虑:特定证券购买、资金限制、平均信用等级、平均年限这些条件,按照题目所求,将决策变量、决策目标和约束条件构成的优化模型求解问题便得以解决。 模型建立 决策变量 用X1、X2、X3、X4、X5、分别表示购买A、B、C、D、E证券的数值, 单位:百万元 目标函数 以所给条件下银行经理获利最大为目标。则,由表可得: MAX Z=0.043X1+0.027X2+0.025X3+0.022X4+0.045X5 (1) 约束条件 为满足题给要求应有: X2+X3+X4> = 4 (2) X1+X2+X3+X4+X5<=10 (3) 6X1+6X2-4X3-4X4+36X5<=0 (4) 4X1+10X2-X3-2X4-3X5<=0 (5) 且X1、X2、3X、X4、X5均非负。 模型求解 将(1)(2)(3)(4)(5)构成的线性规划模型输入LINDO如下: MAX 0.043X1+0.027X2+0.025X3+0.022X4+0.045X5 St X2+X3+X4> = 4 X1+X2+X3+X4+X5<=10 6X1+6X2-4X3-4X4+36X5<=0 4X1+10X2-X3-2X4-3X5<=0 End 求解并进行灵敏度分析,得到: LP OPTIMUM FOUND AT STEP 0 OBJECTIVE FUNCTION VALUE 1) 0.2983637 VARIABLE VALUE REDUCED COST X1 2.181818 0.000000 X2 0.000000 0.030182 X3 7.363636 0.000000 X4 0.000000 0.000636 X5 0.454545 0.000000 ROW SLACK OR SURPLUS DUAL PRICES 2) 3.363636 0.000000 3) 0.000000 0.029836 4) 0.000000 0.000618 5) 0.000000 0.002364 NO. ITERATIONS= 0 RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 0.043000 0.003500 0.013000 X2 0.027000 0.030182 INFINITY X3 0.025000 0.017333 0.000560 X4 0.022000 0.000636 INFINITY X5 0.045000 0.052000 0.014000 RIGHTHAND SIDE RANGES ROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE 2 4.000000 3.363636 INFINITY 3 10.000000 INFINITY 4.567901 4 0.000000 105.714287 20.000000 5 0.000000 10.000000 12.000000 即A,C,E证券分别投资2.182百万元,7.364百万元,0.455百万元。最大税后收益为0.298百万元。 问题(2)分析 问题分析 由(1)中的“影子价格”可知,若投资增加100万元,收益可增加0.0298百万元。大于以2.75%的利率借到100万元的利息,所以应借贷。 模型建立 故可安(1)的模型将第2个约束右端改为11,求解即可。 模型求解 得到:证券A、C、E分别投资2.40百万元,8.10百万元,0.50百万元,最大收益为0.3007百万元 问题(3)分析及求解 由(1)的结果中目标系数的允许范围可知,证券A的税前收益可增加0.35%,故证券A的税前收益增加4.5%,投资不应改变;证券C的税前收益了减0.112%(按50%纳税),故证券C的税前收益可减4.8%,故投资应改变。
『捌』 股票投资数学建模问题
风险最小就是相关系数之和最小的方案吧
投资回报率和风险的关系,就是收益期望和相关系数之间的函数
数学不好,只能乱说说了