股票投资组合的期望收益率和标准差怎么算
Ⅰ 你的投资组合的预期收益率和方差各是多少
预期收益率=0.4*11%+0.6*16%=14%
相关系数是0.6不是0.6%吧?
方差=(0.4*0.22)^2+(0.6*0.29)^2+2*0.4*0.6*0.6*22%*29%=0.056394
标准差=23.75%
Ⅱ 股票的组合收益率,组合方差怎么求
分散投资降低了风险(风险至少不会增加)。
1、组合预期收益率=0.5*0.1+0.5*0.3=0.2。
2、两只股票收益的协方差=-0.8*0.3*0.2=-0.048。
3、组合收益的方差=(0.5*0.2)^2+(0.5*0.3)^2+2*(-0.8)*0.5*0.5*0.3*0.2=0.0085。
4、组合收益的标准差=0.092。
组合前后发生的变化:组合收益介于二者之间;风险明显下降。
(2)股票投资组合的期望收益率和标准差怎么算扩展阅读:
基本特征:
最早的对中国收益率的研究应该是Jamison&Gaag在1987年发表的文章。初期的研究样本数量及所覆盖的区域都很有限,往往仅是某个城市或县的样本。而且在这些模型中,往往假设样本是同质的,模型比较简单。
在后来的研究中,样本量覆盖范围不断扩大直至全国性的样本,模型中也加入了更多的控制变量,并且考虑了样本的异质性,如按样本的不同属性分别计算了其收益率,并进行比较。
这些属性除去性别外,还包括了不同时间、地区、城镇样本工作单位属性、就业属性、时间、年龄等。下面概况了研究的主要结果。
Ⅲ 已知两支股票的期望回报率和标准差,怎么求它们的投资组合的期望回报率呢
投资组合的预期回报率就是两个股票预期回报率的加权平均,
投资组合的标准差就复杂一些,还需要知道两个股票的相关系数.
比如股票A的回报率为8%,股票B回报率为12%,股票A的权重为40%,股票B的权重为60%,
则投资组合预期回报率=8%*40%+12%*60%=10.4%
Ⅳ 如何计算证券组合的期望收益率
投资组合的结果用收益率来衡量。
收益率等于收入减支出除以支出乘100%
Ⅳ 股票,期望收益率,方差,均方差的计算公式
1、期望收益率计算公式:
HPR=(期末价格 -期初价格+现金股息)/期初价格
例:A股票过去三年的收益率为3%、5%、4%,B股票在下一年有30%的概率收益率为10%,40%的概率收益率为5%,另30%的概率收益率为8%。计算A、B两只股票下一年的预期收益率。
解:
A股票的预期收益率 =(3%+5%+4%)/3 = 4%
B股票的预期收益率 =10%×30%+5%×40%+8%×30% = 7.4%
2、在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。
解:由上面的解题可求X、Y的相关系数为
r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979
Ⅵ 求股票的期望收益率和标准差,方差
E(R)=0.1*0.3+0.05*0.7=0.065
方差[30%*(10%-0065)^2+70%*(12%-5%)^2=
标准差平方等于方差
Ⅶ 已知两支股票的期望回报率和标准差,怎么求它们的投资组合的期望回报率呢
投资组合的预期回报率就是两个股票预期回报率的加权平均,
投资组合的标准差就复杂一些,还需要知道两个股票的相关系数。
比如股票A的回报率为8%,股票B回报率为12%,股票A的权重为40%,股票B的权重为60%,
则投资组合预期回报率=8%*40%+12%*60%=10.4%
Ⅷ 股票收益的期望和标准差计算。
一:报酬率乘以相应的概率然后再相加,
Ⅸ 资产组合的预期收益率、方差和标准差是如何衡量和计算的
任何投资者都希望投资获得最大的回报,但是较大的回报伴随着较大的风险。为了分散风险或减少风险,投资者投资资产组合。资产组合是使用不同的证券和其他资产构成的资产集合,目的是在适当的风险水平下通过多样化获得最大的预期回报,或者获得一定的预期回报使用风险最小。 作为风险测度的方差是回报相对于它的预期回报的离散程度。资产组合的方差不仅和其组成证券的方差有关,同时还有组成证券之间的相关程度有关。为了说明这一点,必须假定投资收益服从联合正态分布(即资产组合内的所有资产都服从独立正态分布,它们间的协方差服从正态概率定律),投资者可以通过选择最佳的均值和方差组合实现期望效用最大化。如果投资收益服从正态分布,则均值和方差与收益和风险一一对应。 如本题所示,两个资产的预期收益率和风险根据前面所述均值和方差的公式可以计算如下: 1。股票基金 预期收益率=1/3*(-7%)+1/3*12%+1/3*28%=11% 方差=1/3[(-7%-11%)^2+(12%-11%)^2+(28%-11%)^2]=2.05% 标准差=14.3%(标准差为方差的开根,标准差的平方是方差) 2。债券基金 预期收益率=1/3*(17%)+1/3*7%+1/3*(-3%)=7% 方差=1/3[(17%-7%)^2+(7%-7%)^2+(-3%-7%)^2]=0.67% 标准差=8.2% 注意到,股票基金的预期收益率和风险均高于债券基金。然后我们来看股票基金和债券基金各占百分之五十的投资组合如何平衡风险和收益。投资组合的预期收益率和方差也可根据以上方法算出,先算出投资组合在三种经济状态下的预期收益率,如下: 萧条:50%*(-7%)+50%*17%=5% 正常:50%*(12%)+50%*7%=9.5% 繁荣:50%*(28%)+50%*(-3%)=12.5% 则该投资组合的预期收益率为:1/3*5%+1/3*9.5%+1/3*12.5%=9% 该投资组合的方差为:1/3[(5%-9%)^2+(9.5%-9%)^2+(12.5%-9%)^2]=0.001% 该投资组合的标准差为:3.08% 注意到,其中由于分散投资带来的风险的降低。一个权重平均的组合(股票和债券各占百分之五十)的风险比单独的股票或债券的风险都要低。 投资组合的风险主要是由资产之间的相互关系的协方差决定的,这是投资组合能够降低风险的主要原因。相关系数决定了两种资产的关系。相关性越低,越有可能降低风险。