小张投资6万元买了甲乙两个股票
⑴ 关于股票的数学题
价格9元,每股收益0.1 市盈率=9\0.1=90倍
一般市盈率就是投资者愿为上市公司每一元净利润付出的价格
浦发14\2.2=6.36倍
市盈率只能作为买入、卖出一个参考依据,反着怎么算——只知道20倍的市盈率,问题是股价和每股收益都是在变的。除非每股收益不变。
4.6*1000=4600元 佣金4600*0.3%=13.8元 过户费 1元
4.4*1000=4400元 佣金4400*0.3%=13.2元 过户费 1元
4.2*1000=4200元 佣金4200*0.3%=12.6元 过户费 1元
买入投资13242.6元
你说的这个事我还真没见过,哪有强迫卖股票的。
市价=市净率 1.2*每股净资产 1.4=5.28元
5.28*3000=15840元 佣金15840*0.3%=47.52元 印花税 15840*0.1%=15.84元
过户费 3元
卖出成本 47.52+15.84+3=66.36元
盈利 15840-66.36-13242.6=2531.04元
我要是光凭算这个,肯定不会买的——K线、指标麽也不看。
你这5分真不好赚。
⑵ 某股民拟用不超过12万元的资金,买入甲、乙两支股票可能的最大盈利率
假如全部投资甲,则最大盈利24万,最大亏损72000元;全部投资乙股票,最大盈利12万元,最大亏损2.4万元;甲乙各投资一半,则甲最大盈利12万,乙最大盈利6万,总体最大盈利18万,最大亏损3.6万+1.2万元=4.8万元。以上作为试求。
当然不考率最大亏损额为3.6万考虑的话,全部买入甲股票,最大盈利24万是最大盈利。
从控制最大亏损额为3.6万的角度考虑,可考虑购买买入3万甲股票、9万乙股票,这样甲乙股票可能出现的最大亏损之和为3.6万,最大盈利值为3万乘以200%+9万乘以100%=15万元。
⑶ 财务管理的几个小题,请高手帮帮忙
1、本题已知年利率和复利次数,实际求的是实际利率的问题。
根据公式:i=(1+r/m)m-1=(1+10%/4)4-1=10.38%。
2、本题中,已知现值P=5000元和利率i=10%,也已知每年提取的等额现金流量即A=1000元,求能足额提款时间即期数。根据插入法公式可知:n=n1+(现值系数-)÷(-×(n2-n1)。则查系数表可知:(P /A,10%,7)=4.868,(P/A,10%,8)=5.4339。则n=7+(5-4.868)/(5.439-4.868) ×(8-7)=7.2。则能足额提款时间为第七年年末。
3、本题中,前三年年初无等额现金流量,从第四年年初开始才有,相当于递延年金形式。而题意要求求相当于现在一次性支付金额,则是求递延年金的现值。其方法有三,具体见教材P39。以第一种方法为例,将递延年金视为n期的普通年金,先求出年金在递延期期末m点的现值,再将这个现值调整到第一期期初。则:PA=A×(P/A,i,n)×(P/F,i,m)。题意中,从第四年年初开始,则相当于普通年金从第三年年末开始有现金流量,共五期,则含递延期在内的期数为7年。所以,n=5,m=2,i=10%。
根据这些条件可求:
PA=A×(P/A,i,n)×(P/F,i,m)=50万×(P/A,10%,5)×(P/F,i,m)=156.64万元。
4、(1)求项目年收益的现值与终值,即普通年金的现值与终值,
i=5%,n=10,(P/A,5%,10)=7.7217,(F/A,5%,10)=12.578,
则可求得PA=77.217万元,FA=125.78万元。
(2)求年初投资额的终值,即复利终值。i=5%,n=10,(F/P,5%,10)=1.6289。
则可求得F=162.89万元。
(3)分析该项目是否值得投资,则是分析该投资的终值与年收益的终值大小。
题中,投资终值超过162万元,而收益的终值才不到126万元。所以,不值得投资。
另,从现值上讲也是投资额大于收益的现值。
5、本题题意为已知现在贷款100万元,在给定的期限10年等额偿还,实际上是求年资本回收额的问题。即已知PA=100万元和i=8%,n=10年,求A。
(1)按年条件下,A=PA/(P/A,8%,10)=100万元/6.7101=14.9万元。
(2)按季条件下,则复利次数多些,此时的年利率8%为名义利率,先要求出实际利率再求A。i=r/m,则实际期数=m×n。所以,实际利率i=8%/4=2%;实际期数=10年*4=40期.则按季条件下,A= PA/(P/A,2%,40)=100万元/27.3555=3.6555万元,即每年还款14.622万元.
6、本题即求递延年金即每年年末收益的现值和终值问题。由于从2003年到2005年每年年末无收益,视为递延期(期数3),从2006年末至2010年每年年末有收益,视为年金形式(期数5)。
递延年金终值与普通年金终值计算公式一致,即FA=A(F/A,5%,5)=20万×5.5256=110.512万元。
递延年金的现值计算方式有三,具体见教材P39。以第二种方法为例,则假设递延期也有收益,则变为一个期数为8的普通年金,先求出其现值,再扣除无年金收支的3期现值,即PA=A[(P/A,5%,8)-(P/A,5%,3)]=20万×[6.4632-2.7232]=74.8万元。
7、
(1)期望值计算。E甲=0.3×100+0.4×50+0.3×30=59万元;
E乙=0.3×110+0.4×60+0.3×20=63万元;
E丙=0.3×90+0.4×50+0.3×30=56万元。
(2)标准差计算。===28.089万元。
其他乙、丙可以参照甲的计算公式进行,得到=34.94万元,=23.75万元。
(3)标准差系数计算。
q=×100%。则q甲=28.089/59×100%=47.61%,同样参照公式可以得到q乙=55.46%,q丙=42.41%。
(4)风险收益率的计算。公式为RR=b*q。
则甲的风险收益率为8%×47.61%=3.81%;
同样参照公式可以得到乙、丙的风险收益率分别为4.99%、4.24%。
(5)分析:从风险来看,甲<丙<乙;
从风险收益来看,甲<丙<乙。
如果该企业是稳健投资者,则会选甲,
如果是喜欢风险追求高回报的,则会选乙。
8、本题即在现值一定,期数不同,年金金额不同的情况下求利率的问题。利率越低,则还款方式最有利;利率越高,则还款方式最不利。
第一种方式下:PA=A×(P/A,i,n)即2000=300×(P/A,i,10),则系数=6.6667。
查年金现值系数表可知,当i=8%,n=10时,系数=6.7101;而i=9%,n=10时,系数=6.4177。
利用插入法计算。则i=8%+(6.6667-6.7101)÷(6.4177-6.7107) ×(9%-8%)=8.15%。
同样,参照上述方法可以得到第二种方式下的利率为7.75%,第三种方式下的利率为8.43%,第四种方式下的利率为7.55%。可以看出,采取第四种方式下即分25年还清每年还款180万元的利率最低,是最有利的。同样提示我们,还款期限越长,实际利率越低,对企业越有利。
9、(1)计算65岁时的资产总价。其实就是一个各种资产组合在一起形成一个混合现金流量的终值计处问题。
首先,房产投资未来没有继续投入,仅仅是现有的资产折算到65岁时,是属于复利终值计算问题。i=3%,n=25,P=40万,则F=P×(F/P,3%,25)=83.752万元。
其次,股票投资除现有的外,每年继续投入,则形成一个等额现金流量即年金。那么,股票投资形成两块,一块是现有的投资折算到65岁,属于复利终值计算;一块是每年的投入8000元直到65岁,属于年金终值计算。i=9%,n=25,P=10万,则F=P×(F/P,9%,25)+A×(F/A,9%,25)=10万×8.6231+0.8万×84.701=153.9918万元。
最后,现金资产也是两块,一块是现有的折算到65岁时,属于复利终值计算,一块是后续的存入,属于年金。在后续存入这一块中,又包含两种,一是未来10年每年存2000元,一是随后15年每年存10000元,即计算每年2000元的年金期数为10的终值,再将这个终值折算到65岁时,属于先年金终值后复利终值;同时计算每年10000元的年金期数为15的终值。上述之和即现金资产在65岁时的价值。
计算如下:
F1+F2+F3=10000×(F/P,5%,25)+2000×(F/A,5%,10)×(F/P,5%,15)+10000×(F/A,5%,15)=30.1951万。
综上,张生在65岁时的资产总价等于83.752万元+153.9918万元+30.1951万=267.9389万元。
(2)张生在65岁时捐10万给慈善事业,剩余资产为257.9389万元。该笔资产在20内归零,求每年消费最大金额,即求年资本回收额的问题。将张生65岁假设为现在时刻,知道PA为257.9389万元反过来求年金A。据题意,已知i=7%,n=20,则据公式:A=,即A=PA/(P/A,i,n)=257.9389万/(P/A,7%,20)=24.3476万元。
张生若在退休后20年内每年消费24.3476万元,则可达到他在85岁时财产总额归零的愿望。
⑷ 甲乙两人共同投资开一家体育用品店甲投资4万元已投资6万元由于经营有方一年获得净利润5万元如何分配利润
1. 甲:5*4/(6+4)=2万
乙:5*6/(4+6)=3万。
2.设甲有石子3x吨,乙有石子4x吨,则
(3x+108): (4x-108)=4:3
即 3*(3x+108)=4*(4x-108),得x=108
所以甲原有石子324吨,乙原有石子432吨。
3.假设途中某地距离甲站3x千米,距离乙站5x千米,则
(3x+27) : (5x-27)=3:2
即 2(3x+27)=3(5x-27),得 x=15
所以,甲乙两站相距3x+5x=8x=8*15=120千米
⑸ 某人用24000元买进甲乙两种股票,在甲股票升值15%,乙股票下跌10% 作7、8题
⑹ 王先生用24000元买进甲乙两种股票丶在甲升值百分之十五.乙下跌百分之十卖出.共获利1350元.问王先生买的...
解:设买了甲股票x元,乙股票y元.
则 X+Y=24000
X*1.15+Y*0.9-24000=1350
,
整理,得 X = 15000元
Y = 24000 - 15000 = 9000元 ,①×2+②得5x=75000,
解得x=15000,y=24000-15000=9000,
即 .
答:买了甲股票15000元,乙股票9000元.
⑺ 某人有2万元资金购买甲乙两种股票,其中甲每股8元,乙每股4元,此人把资金平均投资到甲乙,
如果平均投资.那么两万元资金就是购买甲乙每种一万元.
买卖甲:甲股价8元. 10000/8=1250股.但是50股是不能买的,所以说1200股.1200*8=9600。剩下400元。当股票价格升至12元.1200*12=14400+40=14440.
买卖乙:乙股价4元. 10400/4=2600股..当股票价格跌至3元时.2600*3=7800元.
14400+7800=22200. 此人一共获利2200元,某人最终账户所剩下余额22200.(不扣除手续费情况下)
⑻ 甲乙合作做生意甲投资了5万元乙投资了15万元到年底赚了6万元假应该拿多少钱应
两人合作做生意,一个投入了5万元,一个投入了15万元,那么按照百分25%和75%的分配比例,分配利润就可以,
那么年底赚了6万元,甲可以获得,6×25%=1.5万元,乙可以获得,6×75%=4.5万元。
数学解题方法和技巧。
中小学数学,还包括奥数,在学习方面要求方法适宜,有了好的方法和思路,可能会事半功倍!那有哪些方法可以依据呢?希望大家能惯用这些思维和方法来解题!
形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。
形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。
实物演示法
利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。
这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。
二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。
特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。
图示法
借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。
图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。
在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。
列表法
运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。
它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。
验证法
你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。
验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。
(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。
(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。
(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)
按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。
(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。
⑼ 粉笔监考高老师投资8万元买了某股票3200股,一段时间后
解析
设小张投资甲乙股票分别为x、y元,可得:x+y=60000,(1+45%)(1-20%)x+(1+40%)(1-10%)y=60000+11000,解得:x=46000,y=14000。因此小张投入较多的股票投入了46000元,故答案为D。