当前位置:首页 » 股票投资 » 量化投资网股票数据分析

量化投资网股票数据分析

发布时间: 2021-08-29 08:31:48

1. 哪位推荐一个能够做量化投资的软件吗

量化炒股的话关注(名Z)是用数据分析实际数据展现市场情况的,数据选股、风控,计算机来的比较真实,还有7年日内交易的研发经验,对于做差价特别实用

2. 量化投资的主要方法和前沿进展

量化投资是通过计算机对金融大数据进行量化分析的基础上产生交易决策机制。设计金融数学和计算机的知识和技术,主要有人工智能、数据挖掘、小波分析、支持向量机、分形理论和随机过程这几种。
1.人工智能
人工智能(Artificial Intelligence,AI)是研究使用计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及计算机科学、心理学、哲学和语言学等学科,可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。
从思维观点看,人工智能不仅限于逻辑思维,还要考虑形象思维、灵感思维才能促进人工智能的突破性发展,数学常被认为是多种学科的基础科学,因此人工智能学科也必须借用数学工具。数学不仅在标准逻辑、模糊数学等范围发挥作用,进入人工智能学科后也能促进其得到更快的发展。
金融投资是一项复杂的、综合了各种知识与技术的学科,对智能的要求非常高。所以人工智能的很多技术可以用于量化投资分析中,包括专家系统、机器学习、神经网络、遗传算法等。
2.数据挖掘
数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。
与数据挖掘相近的同义词有数据融合、数据分析和决策支持等。在量化投资中,数据挖掘的主要技术包括关联分析、分类/预测、聚类分析等。
关联分析是研究两个或两个以上变量的取值之间存在某种规律性。例如,研究股票的某些因子发生变化后,对未来一段时间股价之间的关联关系。关联分为简单关联、时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。一般用支持度和可信度两个阈值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。
分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。分类是利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测。
预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。预测关心的是精度和不确定性,通常用预测方差来度量。
聚类就是利用数据的相似性判断出数据的聚合程度,使得同一个类别中的数据尽可能相似,不同类别的数据尽可能相异。
3.小波分析
小波(Wavelet)这一术语,顾名思义,小波就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与傅里叶变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了傅里叶变换的困难问题,成为继傅里叶变换以来在科学方法上的重大突破,因此也有人把小波变换称为数学显微镜。
小波分析在量化投资中的主要作用是进行波形处理。任何投资品种的走势都可以看做是一种波形,其中包含了很多噪音信号。利用小波分析,可以进行波形的去噪、重构、诊断、识别等,从而实现对未来走势的判断。
4.支持向量机
支持向量机(Support Vector Machine,SVM)方法是通过一个非线性映射,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题,简单地说,就是升维和线性化。升维就是把样本向高维空间做映射,一般情况下这会增加计算的复杂性,甚至会引起维数灾难,因而人们很少问津。但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以通过一个线性超平面实现线性划分(或回归)。
一般的升维都会带来计算的复杂化,SVM方法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复杂性,而且在某种程度上避免了维数灾难。这一切要归功于核函数的展开和计算理论。
正因为有这个优势,使得SVM特别适合于进行有关分类和预测问题的处理,这就使得它在量化投资中有了很大的用武之地。
5.分形理论
被誉为大自然的几何学的分形理论(Fractal),是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态、结构、信息、功能、时间、能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而极大地拓展了研究视野。
自相似原则和迭代生成原则是分形理论的重要原则。它表示分形在通常的几何变换下具有不变性,即标度无关性。分形形体中的自相似性可以是完全相同的,也可以是统计意义上的相似。迭代生成原则是指可以从局部的分形通过某种递归方法生成更大的整体图形。
分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科。作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识部分来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态、新秩序;三是分形从一特定层面揭示了世界普遍联系和统一的图景。
由于这种特征,使得分形理论在量化投资中得到了广泛的应用,主要可以用于金融时序数列的分解与重构,并在此基础上进行数列的预测。
6.随机过程
随机过程(Stochastic Process)是一连串随机事件动态关系的定量描述。随机过程论与其他数学分支如位势论、微分方程、力学及复变函数论等有密切的联系,是在自然科学、工程科学及社会科学各领域中研究随机现象的重要工具。随机过程论目前已得到广泛的应用,在诸如天气预报、统计物理、天体物理、运筹决策、经济数学、安全科学、人口理论、可靠性及计算机科学等很多领域都要经常用到随机过程的理论来建立数学模型。
研究随机过程的方法多种多样,主要可以分为两大类:一类是概率方法,其中用到轨道性质、随机微分方程等;另一类是分析的方法,其中用到测度论、微分方程、半群理论、函数堆和希尔伯特空间等,实际研究中常常两种方法并用。另外组合方法和代数方法在某些特殊随机过程的研究中也有一定作用。研究的主要内容有:多指标随机过程、无穷质点与马尔科夫过程、概率与位势及各种特殊过程的专题讨论等。
其中,马尔科夫过程很适于金融时序数列的预测,是在量化投资中的典型应用。
现阶段量化投资在基金投资方面使用的比较多,也有部分投资机构合券商的交易系统应用了智能选股的技术。

3. 以量化分析方法选股,要怎么算股票收益率

首先建立各个指标在相应分析期内的“增持”/“减持”组合,通过事后检验,统计并分析各指标的“增持”/“减持”组合在分析期内的信息比率与收益率。依据各个指标的“增持”组合的市场表现,判断该指标的选股能力。

“增持”与“减持”组合的构建方法如下:每次选择一个指标,依据该指标对行业内个股进行排序。根据指标代表的经济含义,选择指标排序最优的前 25%的股票设定为“增持”,后 25%的股票设定为“减持”。将“增持”与“减持”股票,按照流通股市值为权重,组成“增持”与“减持”投资组合。投资组合建立后每隔三个月,根据市场最新的指标数据,对“增持”与“减持”组合进行一次重新调整。

1. 经过众多的统计分析研究比较,一些短线投资者认为当随机指标KDJ的K线从下向上穿过D线时,可以买入股票。
2.短线买截的不足之处。从技术分析的角度而言,短线买点都是短线行为在一定时期内,短线买点特别多,同样短线卖点也特别多,因此投资者据此操作,成功的可能性不大。如果考虑到投资者的交易成本投资者根据短线指标操作股票,成功的概率又进一步降低。另外大多数散户由于交易设施的不完备,短线操作也不方便。因此我们建议散户投资者不要轻易用短线的方法买进股票。
3. 短线的交点在决定卖点时,除了前面所讨论的方法外,一些短线投资者常常用随机指标KDJ来决定股票的卖点。由随机指标KDJ的墓木原理知,当随机指标KDJ的K线从上向下穿过D线时,投资者可以卖出股票

我用的牛股宝,里面有个从炒股大赛里面选出来的牛人榜,这个牛股宝里可以跟着牛人买卖操作,这样能跟这这些牛人学习很多知识,牛股宝我觉得不错。你也可以试试。祝你成功。

4. 股票投资分析的基本方法有哪些

你好,股票投资分析方法主要有如下三种:基本分析、技术分析、演化分析。
(1)、基本分析(Fundamental Analysis ):以企业内在价值作为主要研究对象,从决定企业价值和影响股票价格的宏观经济形势、行业发展前景、企业经营状况等方面入手(一般经济学范式),进行详尽分析以大概测算上市公司的投资价值和安全边际,并与当前的股票价格进行比较,形成相应的投资建议。基本分析认为股价波动轨迹不可能被准确预测,而只能在有足够安全边际的情况下“买入并长期持有”,在安全边际消失后卖出。
(2)、技术分析(Technical Analysis):以股价涨跌的直观行为表现作为主要研究对象,以预测股价波动形态和趋势为主要目的,从股价变化的K线图表与技术指标入手(数理或牛顿范式),对股市波动规律进行分析的方法总和。技术分析有三个颇具争议的前提假设,即市场行为包容消化一切;价格以趋势方式波动;历史会重演。国内比较流行的技术分析方法包括道氏理论、波浪理论、江恩理论等。
(3)、演化分析(Evolutionary Analysis):以股市波动的生命运动内在属性作为主要研究对象,从股市的代谢性、趋利性、适应性、可塑性、应激性、变异性、节律性等方面入手(生物学或达尔文范式),对市场波动方向与空间进行动态跟踪研究,为股票交易决策提供机会和风险评估的方法总和。演化分析从股市波动的本质属性出发,认为股市波动的各种复杂因果关系或者现象,都可以从生命运动的基本原理中,找到它们之间的逻辑关系及合理解释,并为构建科学合理的博弈决策框架,提供令人信服的依据。
本信息不构成任何投资建议,投资者不应以该等信息取代其独立判断或仅根据该等信息作出决策,如自行操作,请注意仓位控制和风险控制。

5. 量化交易系统可以用到股票上吗

当然可以,而且是任何交易者都可以使用量化交易技术,股票交易数据是很容易采集的,就是分析起来比较麻烦,如果题主是职业散户,美股研究社更建议使用一些软件炒股辅助,策略炒股通主要对有量化思路但又没有编程能力的散户非常试用。它量化了所有股票数据数据,而且还提供多因子策略模型供用户建立自己的策略,通过手机点选就能实现,非常好用。

6. 量化分析的量化投资策略

量化投资技术几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。
1·量化选股
量化选股就是采用数量的方法判断某个公司是否值得买入的行为。根据某个方法,如果该公司满足了该方法的条件,则放入股票池,如果不满足,则从股票池中剔除。量化选股的方法有很多种,总的来说,可以分为公司估值法、趋势法和资金法三大类
2·量化择时
股市的可预测性问题与有效市场假说密切相关。如果有效市场理论或有效市场假说成立,股票价格充分反映了所有相关的信息,价格变化服从随机游走,股票价格的预测则毫无意义。众多的研究发现我国股市的指数收益中,存在经典线性相关之外的非线性相关,从而拒绝了随机游走的假设,指出股价的波动不是完全随机的,它貌似随机、杂乱,但在其复杂表面的背后,却隐藏着确定性的机制,因此存在可预测成分。
3·股指期货套利
股指期货套利是指利用股指期货市场存在的不合理价格,同时参与股指期货与股票现货市场交易,或者同时进行不同期限,不同(但相近)类别股票指数合约交易,以赚取差价的行为,股指期货套利主要分为期现套利和跨期套利两种。股指期货套利的研究主要包括现货构建、套利定价、保证金管理、冲击成本、成分股调整等内容。
4·商品期货套利
商品期货套利盈利的逻辑原理是基于以下几个方面 :(1)相关商品在不同地点、不同时间对应都有一个合理的价格差价。(2)由于价格的波动性,价格差价经常出现不合理。(3)不合理必然要回到合理。(4)不合理回到合理的这部分价格区间就是盈利区间。
5·统计套利
有别于无风险套利,统计套利是利用证券价格的历史统计规律进行套利,是一种风险套利,其风险在于这种历史统计规律在未来一段时间内是否继续存在。统计套利在方法上可以分为两类,一类是利用股票的收益率序列建模,目标是在组合的β值等于零的前提下实现alpha 收益,我们称之为β中性策略;另一类是利用股票的价格序列的协整关系建模,我们称之为协整策略。
6·期权套利
期权套利交易是指同时买进卖出同一相关期货但不同敲定价格或不同到期月份的看涨或看跌期权合约,希望在日后对冲交易部位或履约时获利的交易。期权套利的交易策略和方式多种多样,是多种相关期权交易的组合,具体包括:水平套利、垂直套利、转换套利、反向转换套利、跨式套利、蝶式套利、飞鹰式套利等。
7·算法交易
算法交易又被称为自动交易、黑盒交易或者机器交易,它指的是通过使用计算机程序来发出交易指令。在交易中,程序可以决定的范围包括交易时间的选择、交易的价格、甚至可以包括最后需要成交的证券数量。根据各个算法交易中算法的主动程度不同,可以把不同算法交易分为被动型算法交易、主动型算法交易、综合型算法交易三大类。
8·资产配置
资产配置是指资产类别选择,投资组合中各类资产的适当配置以及对这些混合资产进行实时管理。量化投资管理将传统投资组合理论与量化分析技术的结合,极大地丰富了资产配置的内涵,形成了现代资产配置理论的基本框架。它突破了传统积极型投资和指数型投资的局限,将投资方法建立在对各种资产类股票公开数据的统计分析上,通过比较不同资产类的统计特征,建立数学模型,进而确定组合资产的配置目标和分配比例。

7. 股票量化是什么

量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

8. 股票分析技术 量化交易 学生 想找大学生或者年轻人 别太新手,有点经验 然后

你这么厉害 。股票操盘手。你要是分析得准。自己做了。用不着。等别人。

9. 量化投资者是如何获取实时行情数据的呢

这么高级的问题,看对方有没有提供相应的网络接口。如果要实时数据进行量化投资股票,有点困难。而且还要有相应的模型进行实时分析。一般的量化投资都会在别人的软件上单独去分析建立自己的程序的。

热点内容
请问股票退市是啥后果 发布:2025-08-10 16:08:08 浏览:317
厦门慈济慈善基金会在哪里 发布:2025-08-10 15:36:45 浏览:232
炒股的都是什么人啊 发布:2025-08-10 15:36:01 浏览:43
2017投资生物制药股票 发布:2025-08-10 15:30:59 浏览:104
汕头投资理财哪个平台好 发布:2025-08-10 15:26:26 浏览:30
小白该如何入股市 发布:2025-08-10 15:21:41 浏览:939
bit是什么股票交易所 发布:2025-08-10 15:19:30 浏览:825
美国股市中概股下跌多少 发布:2025-08-10 15:19:25 浏览:157
理财30万年利率多少 发布:2025-08-10 14:50:47 浏览:957
股票交易编程接口 发布:2025-08-10 14:30:23 浏览:908