多重分形股票市场
㈠ 请教一下,多重分形维数和单一分形维数有什么区别呢
表达了有一些看上去不规则的事物实际上可以用内在的规律表征,这个表征就是分形(fractal),表征的程度就是分形维数(fractal
dimension),分形更是一种认知自然世界的世界观、方法论,你需要去看书,多看相关的东西,才能有深刻的了解,我只是编制过分形维数计算程序,有一些了解,好久都没看了,加油好好学。。。
㈡ 黄健柏的代表性研究成果
[1] Long-term behavior of non-ferrous metal price models with jumps[J].ADVANCES IN DIFFERENCE EQUATIONS,2014.
[2] Corporate social responsibility, the cost of equity capital and ownership structure: An analysis of Chinese listed firms[J].AUSTRALIAN JOURNAL OF MANAGEMENT,2014.
[3] Incorporating Overconfidence into Real Option Decision-Making Model of Metal Mineral Resources Mining Project[J].DISCRETE DYNAMICS IN NATURE AND SOCIETY,2014.
[4] Project Capital Allocation Combination Equilibrium Decision Model Based on Behavioral Option Game[J].DISCRETE DYNAMICS IN NATURE AND SOCIETY,2014.
[5] The Analysis of Pricing Power of Preponderant Metal Mineral Resources under the Perspective of Intergenerational Equity and Social Preferences: An Analytical Framework Based on Cournot Equilibrium Model[J].ABSTRACT AND APPLIED ANALYSIS,2014.
[6] Binary Tree Pricing to Convertible Bonds with Credit Risk under Stochastic Interest Rates[J].ABSTRACT AND APPLIED ANALYSIS,2013.
[7] Long memory of price-volume correlation in metal futures market based on fractal features[J].TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA,2013.
[8] Empirical study of speculation roles in international copper price bubble formation[J].TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA,2013. Strategic equilibrium
[8] Price analysis and numerical simulation of preponderant high-tech metal mineral resources[J].TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA,2013.
[9] Research on Multifractal Features of Metal Futures Market Based on Multifractal Detrended Cross-correlation Analysis[J].KYBERNETES,2012.
[10] The survival conditions of SMEs in Guangdong Province of China: An empirical research under the globle economic crisis[J].AFRICAN JOURNAL OF BUSINESS MANAGEMENT,2012.
[11] Multiple Timescale Analysis of Metal Prices Volatility Based on Empirical Mode Decomposition[J].JOURNAL OF CONVERGENCE INFORMATION TECHNOLOGY(JCIT),2012.
[12]The Establishment of Copper Price Volatility Pre-Warning Indicatorssystem of China Based on Cross Correlation-Principle Component Analysis[J].INTERNATIONAL JOURNAL OF DIGITAL CONTENT TECHNOLOGY AND ITS APPLICATIONS(JDCTA),2012.
[13] 土地价格扭曲、企业属性与过度投资——基于中国工业企业数据和城市地价数据的实证研究[J].中国工业经济,2015.
[14] 中国金属资源战略形势变化及其产业政策调整研究[J].中国人口.资源与环境,2014.
[15] 沪铜期货市场价格发现的动态贡献——基于状态空间模型的实证研究[J].技术经济与管理研究,2014.
[16] 金属期货量价关系的多重分形特征研究[J].管理评论,2013.
[17] 非公平规避衰变路径实验研究[J].系统工程,2010.
[18] 过度自信对雇员工资契约选择影响的实验研究[J].管理科学,2010.
[19] 企业和行业特征对湖南企业生存年限影响的实证研究[J].系统工程理论与实践,2010.
[20] 非对称过度自信条件下委托代理模型[J].系统工程理论与实践,2009.
[21] 金融发展、资本深化与新型工业化道路[J].金融研究,2008.
[22] 基于激励机制的美式股票期权相对多指数化模型设计[J].系统工程理论与实践,2007.
[23] 两部制电价下电力市场系统动力学仿真[J].系统管理学报,2007.
[24] 我国电力传输企业服务质量激励性规制——基于价格上限规制的修正模型[J].中国管理科学,2007.
[25] 环境规制政策对企业投资行为的影响[J]. 中国管理科学,2006.
[26] 企业进入与行业利润率——对中国钢铁产业的实证研究[J].中国工业经济,2006.
[27] 全球化反应能力:企业国际化战略制胜的瓶颈[J].科学管理研究,2006.
[28] 解雇威胁条件下经营者风险分担与激励设计[J].中国管理科学,2005.
㈢ 多重分形统计学特征
多重分形理论是目前研究十分活跃的一门新兴学科。如果说分形理论研究具有自相似性的不规则几何问题的话,那么多重分形将主要运用于定义几何体上(包括分形几何体)具有自相似或统计自相似性的某种度量或者场,比如岩石中微量元素的含量,某一区内测量的地球物理场,或者单位面积内的矿产地分布密度等。通过这种测量可将其所定义的几何体(或二维面积)分成一系列空间镶嵌的具不同特点的子几何体(或子面积),每种这样的子几何体(或子面积)会构成一种分形,而且具有其自身的分形维数。这种分形的总体将对应一种所谓分形维数谱函数。自然界中许多物理及化学过程会产生多维分形结果,比如在地球化学中具有广泛应用前景的Mulplicative Cascade过程、Diffussion limited aggregatio(DLA)、Turbu-lence、Brownian过程等。这些过程的共同特点是其所产生的结果既具有确定性又具随机性。通过多维分形的研究使数学、物理和化学中许多具有随机和确定双重性质以及奇异性的疑难问题得到了解答。这些成果必将对地质包括地球化学的各个领域产生重要影响。
地球化学元素分布规律的研究是揭示元素矿化富集及空间变化规律的重要途径之一。地球化学数据的统计特征常常用来描述和刻画地球化学元素的分布规律。统计方法之所以能用于研究地球化学元素的分布规律不仅是由于地球化学取样和对样品进行的各种化学分析结果常具有不确定性,而且元素在地壳中的分布本身就具有不均匀性和区域随机性。从具有随机性的地球化学数据中了解元素分布规律是地球化学研究者所面临的重要挑战。统计方法在这方面起着不可替代的作用。然而人们早已注意到普通的统计方法并不考虑样品的空间分布和统计特征随空间度量尺度的变化性。此外,由于一般的统计方法是建立在统计大数定量基础之上的,因而这些统计方法(一、二阶矩有关的统计方法)往往对度量元素的一般值效果较好。严格地说它们并不具备刻画异常值的功能,分形理论则是研究这类复杂系统时空结构特征的有效途径,可以通过多重分形理论清楚地反映出统计方法的局限,而且能有效地克服统计方法的不足,它是一种研究具有自相似或统计自相似场的分布规律和描述场值的奇异性的有效方法,可以用于研究与矿化有关的微量元素在岩石、水系沉积物和土壤等介质中的空间分布和富集规律(陈春仔等,1998;成秋明,2000;谢淑云等,2003;AgterbergFP等,1994;ParedesC等,1999)。与矿化有关的微量元素地球化学场具有多重分形结构特征,微量元素的背景值往往服从正态或对数正态分布,然而高低异常值服从多重分形分布(ChengQ等,1994,1996,1999;成秋明,2004)。本次研究应用多重分形的面积校正累计频率法,对铜陵天马山矿区的18个微量元素进行了研究,初步探讨了主成矿元素、伴生元素和非成矿元素的空间变化和矿化富集规律,为天马山地区进一步找矿预测提供依据。
1.计算方法
地球化学采样点往往不是网格化的,局部区域可能采样较密或较稀甚或缺失。若直接应用原始样品分析数据进行元素含量频率分布研究,则可能过分强调采样较密的局部区域而相对忽视采样较稀的局部区域,不能真实地反映区域内元素含量值的分布特征。浓度-面积法[299]计算大于含量值ci(i=1,2……n;n为含量值分组数cmin≤ci≤cmax)的面积S(C≥ci),然后在双对数坐标下考察ci~S(C≥ci)间是否存在幂率关系即分形。对于S(C≥ci),采用两种途径来确定:①在对原始数据加权移动平均(weightedmovingaveragemethod)插值后制作的地球化学等值线图上,S(C≥ci)为含量值C大于ci的等值线圈闭的区域面积;②统计原始含量数值的盒子,即用边长确定的正方形网格覆盖研究区,S(C≥ci)等于具有含量值大于ci的正方形网格数。如果在正方形中不止一个样品,则取平均值作为该网格的含量值。众所周知,等值线的计算意味着网格结点的估值运算,运用移动平均、距离系数加权移动平均、克里格法和泛克里格法等网格估值方法可能产生不同的效果;局部特高值点(outlier)可能使邻近网格点的估值普遍偏高,导致孤立高值点拉高一大片;内部的采样空白区也可能以很不准确的估计值来代替。由此看来,方法①存在着固有的不足。本文采用方法②,即面积校正累计频率法研究元素含量频率分布,其计算步骤如下:
以一网格覆盖采样区域,记采样空间坐标(x,y)的最小、最大值分别为xmin,xmax,ymin和ymax,则x和y方向的网格数nx和ny应满足:
危机矿山深部隐伏矿大比例尺定位定量预测技术研究
式(8-5)表明x,y方向应具有相同的网格间距,式(8-6)说明总网格数乘以平均网格密度d应为总样品数n。由式(8-5)、式(8-6)可解出nx和ny,从而确定所需的覆盖网格。平均网格密度d值可取1~2,使得采样较密区域的网格内有2个或2个以上样品,采样较稀区域的网格内有1个样品,部分网格内没有样品,即为采样空白区。过大的d值会产生数据的“平滑”。本研究由于采样点为网格化的,采用d值为1.5。
斜交参考因子得分Y(i,1)正异常中心有3个,分别位于测区东部46线、50线和66线,显示有一期Au、Hg、Sb、Pb、Ag、As组合元素的富集出现在距天鹅抱蛋山岩体较远处,与岩体成因关系不明显。
计算各个网格元素含量平均值C,并对C值进行累计频率计算,即选定一组c={ci}(i=1,2……n)为非空网格数cmin≤ci≤cmax,统计所有网格平均值C大于c的网格数N(C>c),最后在双对数坐标下绘制c-N(C>c)曲线。因C值反映了采样面积校正后的含量分布,称其为面积校正累计频率(area-calibratedaccumulative-frequency,ACAF)法,其结果与浓度-面积模型方法①只相差一个常系数,即单位网格的面积,不影响双对数坐标下曲线的形态。可见,ACAF既消除了由于样品点分布不均一的影响,又不会因孤立高值点导致其邻近等值线畸变和难以剔除采样空白区等,且算法简单。
ci值按下式确定:
危机矿山深部隐伏矿大比例尺定位定量预测技术研究
式中:Cmin为最小平均含量;Cmax最大平均含量;δ为校正系数。ns为计算累计频率的分组数因元素不同而取值不一。使得ci在对数坐标下为等距,否则容易导致数据点在低含量区过稀而在高含量区过密,影响对其分布模式的总体认识。
2.讨论
1) 在图8-15中,元素含量(c)与个数(N)的投影点呈现出连续的曲线分布趋势,而不是单一的直线分布所表示的简单分形,显示出一种连续分布趋势的多重分形特征。
图8-15 天马山微量元素含量的ACAF曲线
2) 双对数坐标下各元素含量的曲线有两近似线性段。第一近似线性段大致反映了介于检出限到测定下限之间或测定下限附近的低值波动;另一近似线性段跨越了主要的含量区间,反映了地球化学场的内禀分形特征。参数b1、b2(表8-18)为这两个近似线性段经最小二乘拟合的直线斜率的负值,即累计频率分布的幂率。
表8-18 天马山微量元素多重分维值
3) 元素含量频率分布曲线上的两近似线性段之间为连续过渡,并有截然的转折点,且第一直线段只反映了介于检出限到测定下限之间或测定下限附近的低值波动。
4) 在部分图像中出现了星点状尾现象,均为高值点,当星点状尾位于拟合直线下端时,表明该元素在矿区有为局部矿化富集趋势。
5) 分维数b定量地刻画了元素含量在空间分布上的丛集程度和不均匀程度。根据有些学者利用分数的维数b表示元素的分布偏离正态分布的程度。多分维b数值反映了多次矿化事件的叠加,一个分数维b值代表了一次矿化(成矿阶段或成矿期),本区亦可分为多期成矿阶段。从分形曲线的拐点也可以判断矿区存在多期次成矿活动,因此多分形研究对确定不同成矿期次及同一成矿期次的不同成矿阶段是有意义的,但对成矿期次的判别除据拐点分布情况外,还应据矿床地质的研究。
6) 与传统统计方法中聚类分析所得到类别相比较,可以发现多重分形分类得到结果与聚类分析所得到结果有较强的一致性,两者的分类几乎完全一致,这也说明分维值的计算结果是合理可信的。元素中b2值的大小变化可以解释为:b2值越小,即直线越平缓,元素的低含量点到高含量点的变化频率下降的越慢,元素含量在空间上的丛集程度越高,就存在着较多的高含量点,有富集成矿的趋势;b2值越大,则高含量点分布较少,主要含量点集中在低含量区,也就不存在大规模富集成矿的可能。
㈣ 具有多重分形结构的文学名著还有哪些
中学生必读名著:初中部分(10种) 《西游记》《水浒》《朝花夕拾》《骆驼祥子》《繁星·春水》《鲁滨孙漂流记》《格列佛游记》《童年》《钢铁是怎样炼成的》《名人传》 高中部分(20种) 《论语通译》《三国演义》《红楼梦》《呐喊》《女神》《子夜》《家》《雷雨》《围城》《哈姆莱特》《堂吉诃德》《歌德谈话录》《巴黎圣母院》《欧也妮·葛朗台》《复活》《普希金诗选》《泰戈尔诗选》《老人与海》《谈美书简》《匹克威克外传》
㈤ 股民对股票市场的言论
去各大财经网站,看看评语就知道了,那才叫真实!
㈥ 多重分形模型
当今分形理论的主旋律是多重分形(Multi-fractals),因为简单分形只用一个维数来描述其整体的特征,不能完整地刻画大自然的复杂性和多样性.对于许多复杂的现象,它们包含多个层次,每个层次具有不同的统计特征.比如,对湍流、混沌和分形生长类型的非均匀复杂几何体,必须用多个维数来描述,才能全面刻画其特征.多重分形就是针对这类情况而提出的新概念.
多重分形也称为分形测度.它是研究一种物理量在一个支撑(support)上的分布状况,换句话说,多重分形理论是定义在分形上的多个标度指数的奇异测度所组成的无限集合.多重分形理论定量刻画了分形测度在支撑上的分布状况.
3.5.1 矿床分布模型
Mandelbort认为:“高品位的铜矿的分布是不均匀的,主要集中在世界少数地区.如果进一步考察其中一个地区铜矿的分布,就会发现其分布仍然是不均匀的,主要集中在少数几个子区域之中.从统计意义来说,可以认为:在每一储铜区,无论其区域大小,高品位的铜矿的相对分布都是相同的.”我们现在设想一个矿床分布模型(图3.8).为了讨论方便,只限于一维的模型.假定有一单位长度的线性地区.第一步,将线性区分成三段,每段长1/3.两端的两段,矿产密度(聚集概率)是P1,中间一段为P2,且P2>P1(2P1+P2=1),显然,矿物向中间富集[见图3.8(a)].第二步,在0~1/3,1/3~2/3,2/3~1的三段地区再一次重复上述富集过程,9个子段的矿物浓度为,矿物的富集进一步集中在更少数地区[见图3.8(b)].重复上述富集过程无穷次,富集作用完成,矿产分布形成.图3.8(c)表示第三步(k=3)的结果,图3.8(d)给出无穷步以后的情况.从上面的例子我们可以看出,最终形成的矿产是分形的,但十分复杂.为了完整地描述它,仅用单一一个分维数是不够的,需要多个(甚至无穷多个)参量才能描述它.
从以上模型可以看出:①成矿作用具有相似性,无论哪个地段的成矿作用过程都是相似的,这就造成矿床及元素的空间分布服从分形关系;②成矿富集过程,即地质作用的多次迭加,类似于数学的多次迭加;③该模型可以用于解释一个问题,“地质条件相似,勘查程度相等的地区,产出的矿床储量多少相差极为悬殊”.
图3-8 成矿模型示意图
3.5.2 多重分形模型
我们把研究对象划分为N个不同的区域Si(i=1,2,…,N).设ri为第i个区域Si线度大小,Pi为该区域Si的测度(例如概率),不同的区域Si,Pi也不同,可用不同的标度指数αi来表征.
分形混沌与矿产预测
若线度大小趋于零,则上式化为:
分形混沌与矿产预测
其中αi是分形体某小区域的分维数,称为局部分维或标定指数,一般因区域而异,其值大小反映了该区域生成概率的大小.
在αi中,有相同α值的区域数目Ni(r)也与区域大小ri有关,即:
分形混沌与矿产预测
其中f(α)表示α在总的分布中所占的分量,它是α的连续函数,正是它构成了多重分形谱,即f(α)谱.f(α)的物理意义是具有相同α值的子集的分维数.一个复杂的分形体,它的内部可分为一系列不同α值(Pi值)所表示的子集.这样f(α)就给出了这一系列子集的分形特征.
可以证明,f(α)是α的凸函数,即f(α)曲线是一条凸曲线,其峰值f(α)=D0,即相似维或容量维.f(α)=α处的值即是信息维数D1.
多重分形用α表示分形体小区域的分维数,因为小区域数目很大,于是可得一个由不同α所组成的无穷序列构成的谱并用f(α)表示.f(α)和α是描述多重分形的一套参量.
我们从信息论角度也可以选另一套描述多重分形的参量q和Dq.当r→0时,我们可得:
分形混沌与矿产预测
其中称为q次概率矩,Dq称为q次广义分维数(或q次信息维),q是表征多重分形不均匀程度的量,C>0称为比例常数,τ(q)=(q-1)Dq是q的函数,∑Pi=1.(3.5.4)式称为多重分形模型.通过Legender变换可得(具体论述见文献陈禺页,陈凌.分形几何学,1998年,p.127):
分形混沌与矿产预测
从上式可以看出,若有二个区域m和j的概率分别是Pm和Pj,且Pm≫Pj.当q≫1时,在∑求和中显然是起主要作用,这时的Iq(r)和Dq主要反映的是概率高(或稠密的)区域的性质.在q→∞极限条件下,可以只考虑Pmax而忽略其他的小概率,这样就大大简化了Iq(r)的计算.反之,当q≪1时,Iq(r)和Dq主要反映的是分布中概率比较小(或稀疏的)区域的性质.多重分形是一个由有限几种或大量具有不同分形行为的子集合叠加而组成的非均匀分维分布的奇异集合,因此,多重分形概念是原始分形概念对于非均匀分形的自然推广.利用多重分形这个概念,使我们能分层次地了解分形内部的精细结构.
将式(3.5.1)和(3.5.3)代入(3.5.4),可得:
分形混沌与矿产预测
由于r很小,则在求和时,Iq(r)仅当αq-f(α)取极小值时贡献最大,由于α随q不同而变化,故极小值条件为:
即,此式说明f(α)的斜率数值就是q阶矩的阶数.
即,此式说明f(α)是一个上凸曲线.
由上面二式可以求出当αq-f(α)取极小值时α的值α*(q)来.这时Iq(r)可以写成:
分形混沌与矿产预测
代入(3.5.4),可得:
分形混沌与矿产预测
式(3.5.9)表明,如果知道α和它的谱f(α),就可以求出Dq来.反之,如果知道了Dq,我们也可以求出α来.将式(3.5.9)对q求微商,可得:
分形混沌与矿产预测
上述关系式(3.5.1)~(3.5.10)构成了多重分形的理论核心,不论用α,f(α)或q,Dq作为独立参数都可以描述多重分形内部结构,可根据实际情况决定用哪一组参数(表3-7).
这两套参量之间的关系为:Dq=(1/(1-q))[qα-f(α)]或f(α)=qα-τ(q)
其中
分形混沌与矿产预测
表3-7 τ(q),α(q),f(α(q)),Dq在q=0,1,±∞处的值
定理:q次广义分维数Dq满足下列不等式:
分形混沌与矿产预测
证明:由不等式(简明数学手册,上海教育出版社,1978)
分形混沌与矿产预测
上式等号成立当且仅当所有的αi都相等.
分形混沌与矿产预测
即 Dq′≥Dq当q>q′时
证毕
根据定理的结论,可推知:
D0(相似维)≥D1(信息维)≥D2(关联维)
注意:上面的定理成立是有条件的,即:∑Pi=1并且当r充分小时.但是在用线性回归方法处理实际数据并计算出广义分维数的Dq(即线性回归方程的斜率),不一定都符合该不等式 Dq≤Dq′(当q>q′时).这是因为用统计上的线性回归方法得出的结果是整体上的结果(取决于所有的数据),它与用取极限方法得出的结果是不一样的(参见下面的模拟研究结果).
3.5.3 多重分形模型模拟研究
我们在计算机上产生了[0,1]区间上的均匀分布,标准正态分布和对数正态分布的随机数各10000个,将每种分布的随机数分成10组(即每组1000个随机数,共有30组),用于多重分形模型的模拟研究.
将每组1000个随机数,按从小到大的次序排列,并把随机数分布的总区间分成r个子区间,计算进入第i个子区间内的随机数的频率Pi(i=1,2,…,r),令,其中r为正整数.
这样得到了数据(Iq(r1),Iq(r2),…,Iq(rn))和(r1,r2,…,rn),将这些数据代入(3.5.4)式中,然后两边取对数,即(3.5.4)式化为一元线性回归模型,应用最小二乘法求出斜率的估计量,即q次广义分维数.
具体计算结果见表3-8(图3-9),表3-9(图3-10)和表3-10(图3-11).
表3-8 均匀分布的
表3-9 正态分布的
表3-10 对数正态分布的
说明:(1)表3-8,表3-9和表3-10中的为相应分布的10组q次广义分维数的平均值.
(2)对于均匀分布,正态分布和对数正态分布的随机数,取n=26,ri=3+2i(i=1,2,…,26).主要依据数据(Iq(r1),Iq(r2),…,Iq(rn))和(r1,r2,…,rn)在此范围内(q≥0),存在无标度区和统计上的要求.
(3)随机数抽取样本1000个,符合统计推断的要求条件.
(4)当q→1时,广义分维数就是信息维数D1.
为了说明q次广义分维数D^q的意义,我们引入广义熵Kq(r)(Renyi熵)(q=0,1,…)
分形混沌与矿产预测
图3-9 均匀分布的拟合图
熵是衡量随机现象的不肯定性程度的一个度量.不肯定性程度(随机现象的分布均匀程度)越高,熵值越大.根据(3.5.5)式和(3.5.11)式,我们可推知广义分维数与广义熵Kq成正比.广义分维数可以表征随机数或样本之间的结构性越大,表示随机数或样本均匀程度好;反之,值越小表示随机数或样本均匀程度差.由表3-8,表3-9和表3-10中数据可推知:均匀分布(均匀程度好)的随机数广义分维数>正态分布(均匀程度居中)的随机数广义分维数>对数正态分布(均匀程度差)的随机数广义分维数(q≥0).以上结论与实际情况符合.广义分维数是研究不均匀程度、复杂程度、粗糙程度和不规则程度的度量.
(注:此节的分维数大小比较与3.3.2节的结果不一致,这是因为它们的各自分维数所对应的模型不一致,从而导出的结论也不一致,因此,分维数大小的比较,一定要在相同模型和条件下进行,否则比较是无意义的.)
图3-10 正态分布的拟合图
图3-11 对数正态分布的拟合图
3.5.4 应用实例
某省地矿局物探大队在某金矿田近400km2范围内开展了1∶5万水系沉积物地球化学元素测量,共得到Au和Ag数据各405个(共有810个).
将上述金的数据以1km2为单元进行网格化,应用网格化数据绘制金地球化学异常图3-14.该图表明:①金异常在空间分布上与正长斑岩体具有一致性,这表明整个正长斑岩体可能是一个富金岩体.②围绕正长斑岩体和闪长玢岩体发育环形金异常,正长斑岩体北侧发育区域性线形金异常.③该金矿位于环形金异常与线形金异常的交汇域.环形与线形金异常的叠加表明该类金矿床的岩控,裂控的双重控矿性质.④岩体内外金高浓度带分布具有了一定的方向性,构成了一系列北西带和北东带.
通过因子分析确定了四类元素组合,其中一类组合为Au-Ag-Hg.Au-Ag-Hg正因子计量等值线(图3-15)在岩体上形成两个北东带,在岩体北东侧形成区域性北西带,它代表了低温金组合异常的分布.
(1)将原始数据进行标准化变换.
变换公式:
分形混沌与矿产预测
其中xi(i=1,2,…,N)为原始数据(Au和Ag元素).
分形混沌与矿产预测
变换后的数据的平均数为0,方差为1.且各元素数据的量纲一致,且两元素数据在标准化变换前后的相关程度不变.
(2)将标准化变换后的各元素数据,按从小到大的次序排列,并把该元素数据分布的总区间分成r个子区间,计算进入第i个子区间内的随机数的频率Pi(i=1,2,…,r),令:
分形混沌与矿产预测
这样得到了数据(Iq(r1),Iq(r2),…,Iq(rn))和(r1,r2,…,rn),然后将该数据绘在双对数坐标系统中(即lnIq(r)—lnr),连接各点,曲线存在明显的直线段,即存在无标度区(q≥0).
(3)将数据(Iq(r1),Iq(r2),…,Iq(rn))和(r1,r2,…,rn)代入(3.5.4)式中,然后两边取对数,应用最小二乘法求出斜率的估计量,即q次广义分维数.
具体计算结果见表3-11(图3-12)和表3-12(图3-13).
表3-11 Au数据的
表3-12 Ag数据的
图3-12 Au数据的拟合图
图3-13 Ag数据的拟合图
图3-14 某金矿田Au地球化学异常图
图3-15 某金矿田水系沉积物地球化学因子计量(>0)图
由表3-11和表3-12中的数据可见:
(1)元素Au和Ag数据分布的均匀程度在正态分布和对数正态分布的均匀程度之间.
(2)元素Au和Ag的广义分维数变化趋势基本一致(q≥1),说明元素Au和Ag数据关系密切.以上结论与实际情况相符合.
㈦ 多重分形谱有几个数 matlab 程序
每N个输出一个y=decimate(x,N)例子x,每5个点输出一个y=decimate(x,5);
㈧ 请教一下,多重分形维数和单一分形维数有什么区别呢
表达了有一些看上去不规则的事物实际上可以用内在的规律表征,这个表征就是分形(fractal),表征的程度就是分形维数(fractal dimension),分形更是一种认知自然世界的世界观、方法论,你需要去看书,多看相关的东西,才能有深刻的了解,我只是编制过分形维数计算程序,有一些了解,好久都没看了,加油好好学。。。
㈨ 多重分形分析用什么软件可以做出来
一般都是自己做的,RS analysis和detrended fluctuation analysis这两种,网上能找到matlab代码。
㈩ 先对序列依次进行MF-DFA一元多重分形度计算,再根据MF-X-DFA测算序列多重分形度间相关性的思路研究”翻译
先根据mf,在加43,再问老师