当前位置:首页 » 市值市价 » 湍流和股票市场

湍流和股票市场

发布时间: 2021-06-25 15:13:50

『壹』 你认为数学的未来,还有发展空间吗

在所有的学科中,数学或许具有最悠远而连绵的历史,只有天文学能与其相媲美。这两门学科都可以追溯到古巴比伦时代(Ancient Babylon),那时的发现在今天依然是重要的。

未来,数学也将发生革命。有的已经在发生了:计算机科技的日新月异,大数据与人工智能不断增大的影响,生命科学和金融行业提出的新的挑战。当然还会出现别的,许多事情都是难以预言的。

某些情况下数学证明取代了其他科学中的观察和实验的地位——就是说,数学通过证明来避免被个人的聪明引向歧路,避免因为喜欢而相信并不真实的东西。显微镜的发明不能取代生物学实验,计算机也代替不了数学证明。我们在学科的类比中看到,计算机强化了证明的技术手段,但是没有改变逻辑的一贯性,从已知的定理导出新的定理,而推导的路线应该经得起专家严格的审查。证明的概念将作为数学最基本的东西保留,正如陈景润证明哥德巴赫猜想(Goldbach conjecture)一样。

数学的力量来自两个源泉的汇流。

第一个是“真实的世界”。开普勒(Johannes Kepler)、伽利略(Galileo Galilei)、牛顿(Isaac Newton)告诉我们,外在世界的诸多方面可以通过微妙的数学法则(自然定律)来认识。有时物理学家会修正这些定律的形式。牛顿力学让位给量子力学和广义相对论,量子力学让位给量子场论,量子引力或超弦引领着未来的理论修正的方向。现实世界的问题激发新数学的产生,即使产生它的理论改变了,但数学还在,而且依然重要。

证明黎曼猜想究竟有多重要呢?

可以这么说,作为当今数学界最值得期待解决的数学难题,黎曼猜想的对或错,直接影响整个以黎曼猜想作为前提的数学体系。毕竟,我们现有1000条以上的数学命题,都是以黎曼猜想及推广形式的成立作为前提的。一旦黎曼猜想被证实,它们就会成为坚不可摧的数学定理。反之,如果被证伪,那么这些数学命题中的很大一部分将不可避免地成为黎曼猜想的“陪葬品”。

再者,黎曼猜想研究的就是数学中的素数分布。它从提出到现在已有160多年,它的藤蔓早已从数学界跨越到了物理界。

例如,广义相对论最初源于爱因斯坦意识到引力并不是一种力,而是质量导致时空几何弯曲的体现。然而,当时并没有数学理论来支撑爱因斯坦的想法,直到爱因斯坦了解到黎曼猜想“非欧几何”,才让广义相对论问世。

2018年,英国数学家阿蒂亚(Michael Atiyah)声称证明了黎曼猜想,但遭到了一些学者的强力质疑,这一证明并不成立。尽管如此,他的思路或许可为后续的证明提供帮助。

上面所提到的21世纪七大数学难题,将助力数学家对于未来纯数学的研究和发展起到推动作用。

英国皇家学会数学教授斯图尔特(Ian Stewart)认为,在牛顿时代,数学问题的主要来源是天文学和力学,也就是自然科学。在未来,更奇异的学科还会涌进数学。其中之一就是已经高度数学化了的量子物理学。今天,量子场论、几何学、拓扑学和代数之间开始出现新的联系。未来的量子场、超弦以及它们之外的各色理论所激发的新结构,将开拓全新的代数和拓扑的天地。

19世纪的数学家把传统的“实”数扩大到“复”数,让“-1”有了平方根,给数学带来了无限生机。很快,数学的每一个领域都“复化”了:产生了与旧的实数一样硕果累累的复数的数学。“量子化”是21世纪的“复化”,我们将走进量子代数、量子拓扑、量子数论的世界。

未来生命科学会激发出一门新的数学:生物数学。科学家曾经相信人类基因组有10万个基因,结果错了,只有34000个。从基因走向蛋白质,那路线图比我们想象的复杂得多;实际上也许根本没有那样的地图。基因是一个动态控制过程的一部分,过程中不仅制造蛋白质,还不断修正它们,使它们在进化的生命里,在生命历程的恰当时刻,找到自己恰当的位置。认识这个过程所需要的远不只是一列DNA密码,而是我们缺少的多数东西就是数学。

生物数学是把生命生长动力学与DNA的基因信息过程融合起来的新数学。DNA密码依然重要,但不是全部。新的生物数学可能是组合生物学、数学、分析学、几何学和信息学的奇异混合。

与物理学中数学用来表达定量的定律不同,对现实世界的预测通常是大数据加上人工智能分析的结果。例如,为了模拟台风的巨大漩涡,工程师们需要列出千万个小区域暖湿气体的运动方程,然后通过大量计算来解决这些方程。现在,借助于计算机和大数据分析的“漩涡的微积分”有可能把人们从无穷的数字纠缠中解放出来。这是一个动力学模型形成的定性的、上下关联的数学理论。

再如,期货和股票市场,许多中介通过买卖期货和股票来相互影响。金融业就是这样从相互影响中凸显出来的。未来,金融和商务的数学也将在革命中产生,抛弃现在流行的“线性”模型,带来数学结构更准确反映市场变化的数学模型。

未来,数学发展的空间仍然足够大,它是帮助我们重新认识世界的工具——通过新的模式,而不是几十亿个魔幻般跳动的数字。

『贰』 fluent里怎样显示一个剖面的湍流强度图

fluent里显示剖面的湍流强度图:display-->contours--->velocity-->vorticity.
Fluent是目前国际上比较流行的商用CFD软件包,在美国的市场占有率为60%,凡是和流体、热传递和化学反应等有关的工业均可使用。它具有丰富的物理模型、先进的数值方法和强大的前后处理功能,在航空航天、汽车设计、石油天然气和涡轮机设计等方面都有着广泛的应用。
FLUENT系列软件包括通用的CFD软件FLUENT、POLY­FLOW、FIDAP,工程设计软件FloWizard、FLUENT
for
CATIAV5,TGrid、G/Turbo,CFD教学软件FlowLab,面向特定专业应用的ICEPAK、AIRPAK、MIXSIM软件等。
FLUENT软件包含基于压力的分离求解器、基于压力的耦合求解器、基于密度的隐式求解器、基于密度的显式求解器,多求解器技术使FLUENT软件可以用来模拟从不可压缩到高超音速范围内的各种复杂流场。FLUENT软件包含非常丰富、经过工程确认的物理模型,可以模拟高超音速流场、转捩、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工等复杂机理的流动问题。
FLUENT软件的动网格技术处于绝对领先地位,并且包含了专门针对多体分离问题的六自由度模型,以及针对发动机的两维半动网格模型。
POLYFLOW是基于有限元法的CFD软件,专用于粘弹性材料的层流流动模拟。它适用于塑料、树脂等高分子材料的挤出成型、吹塑成型、拉丝、层流混合、涂层过程中的流动及传热和化学反应问题。
FloWizard是高度自动化的流动模拟工具,它允许用户进行设计及在产品开发的早期阶段迅速而准确地验证设计。它引导用户从头至尾地完成模拟过程,使模拟过程变得非常容易。
FLUENT
for
CATIAV5是专门为CATIA用户定制的CFD软件,将FLUENT完全集成在CATIAV5内部,用户就像使用CATIA其他分析环境一样使用FLUENT软件。
G/Turbo是专业的叶轮机械网格生成软件。
AIRPAK是面向HVAC工程师的CFD软件,并依照ISO7730标准提供舒适度、PMV、PPD等衡量室内外空气质量(IAQ)的技术指标。
MIXSIM是专业的搅拌槽CFD模拟软件。
除FLUENT外,常用的CFD软件及相关仿真软件还有专业三维流场分析软件——CFX、三维CFD快速求解器——CART3D、流体系统仿真、设计与优化平台——Flowmaster、专业的离散元仿真分析软件——EDEM等。

『叁』 数学公式z=z^2+c

其实这就是一个迭代的思想。最初在研究信号的噪声段发现。经过该式子的反复迭代而产生的几何图形,任截取一段与原图形具有很大程度的相似性(自似性)。不断分割,不断放大,无穷无尽。分形之父曼德尔布罗特的分形几何理论不仅仅可以用来理解数学问题,还可以用来描述许多其他领域的事物,如股票市场的价位变化、湍流的波动起伏、地质活动、行星轨道、动物群体行为、社会经济学模式,甚至音乐也可以通过图形来表达。具体的一些内容,你有兴趣的话可以去fxysw(分形艺术网)看看,那里有不少的资料。视频的话,建议你可以先看看这部短片,优酷和电驴上都有,相信你会和我一样获得不少收获。

『肆』 为什么说统计力学是经济物理学的基础

一个争议颇多的话题:经济物理学赖以成立的可能的物理理论基础

众所周知,传统物理学得以成立的理论基础就是俗称的“四大力学”,即统计力学(含热力学)、经典力学、量子力学和电动力学。

经济物理学是不是也可能以这四大力学为其理论基础呢?

欲回答该问题,为便于理解起见,这里先从“经济市场”(经济物理学所关注的对象)与“复杂流体”的表观相似性出发,做个比较。关于复杂流体,这里需要先补充几句,它是传统物理学中软凝聚态物理所关注的系统,根据1991 年诺贝尔物理学奖获得者德热纳(P. G. de Genns)的著作[Rev. Mod. Phy. 64,645(1992)],复杂流体主要包括以下四种,即液晶、高分子、胶体和表面活性剂。

若从研究对象上看,“经济市场”中的行为人(散户或机构投资者)构成了市场中的最小功能单元。所以,从表观上看,“经济市场”似乎可被视为“复杂流体”之一种——一种非传统意义上的“复杂流体”。大体说来:颗粒悬浮液(“复杂流体”中的一个典型系统)中含有大量的固体颗粒,这些颗粒在外电场或磁场的影响下,源于自身极化之特性,可形成链状或柱状结构(图3),从而使得系统内的颗粒分布从无序到有序。

图3 外电场导致介电颗粒形成链状结构。此实验图片出自Chem.Phys.Lett. 423,165(2006)

股票市场(经济或金融市场之一种)中含有大量的行为人,他们在外场(此处“外场”可以视为国家发布的宏观政策等外界信息流)的影响下,源于自身趋利避害之特性,在某一时期内可形成 “买”或“卖”占据主导地位的状态,从而使得系统内行为人的行为从无序(买方与卖方各占50%)转变为有序(买方或卖方占据主导地位)。

至此,从研究对象上看,似乎可以这么说,“经济市场”是一种非传统意义上的“复杂流体”。

然而,分析“经济市场”和“复杂流体”的具体方法尚不尽相同,人们迄今还无法为两者找出完全意义上或定量上的一致性。曼特尼亚(R. N. Mantegna)和斯坦利的经典著作《经济物理学导论》(中译本)的第11 章的标题是《金融市场和湍流》。在那里,他们声明“我们的目标是论述这两个学科之间的交叉研究是很有用的,而不是论述根据湍流进行类推在定量研究中是正确的”。他们撰写的第11 章很好地回答了他们自己提出的一个问题,即“我们对湍流的研究能否帮助我们研究金融市场上价格的变动呢”。答案是肯定的——正如他们最终的研究结论所显示的。

我想,人们不应该只满足于“经济市场”与“复杂流体”统计规律上的部分定性一致(而这类一致正是曼特尼亚和斯坦利在他们著作的第11 章中所关心的!),我在上文中为两者建立联系的出发点是建立在这两类系统的微观结构的相似性上。显然,这样的类比可以启发我们做些新的思考:这两类系统中的微观动力学机制是否也有其相似性呢?

针对这个问题,根据上面的简单类比分析(颗粒悬浮液与股票市场),我的答案是:有。换言之,我这里建议我们从构成经济市场的行为人的角度出发,类比传统复杂流体(如颗粒悬浮液等)中的“颗粒们”,去构建我们的基于行为人的模型。我想,这该值得我们深入探讨。从操作手法上看,处理传统复杂流体时常用到的分子动力学模拟方法显然可以为我们构建新的基于行为人的模拟提供有价值的参考。但是,这个任务,任重道远!

我在上文中试图给出“复杂流体”和“经济市场”之间表观上的联系,并试图给出我的观点:“经济市场”可以视为“复杂流体”之一种。但是,前面的内容更多的是现象的论述,作为科学,我们有必要透过现象看本质,较为深入地论述一下两者之间的联系。为此,我这里尝试从这两个系统赖以成立的理论基础做比较,谈下去。

“复杂流体”作为传统物理学所关注的系统之一,它显然以上文提及的“四大力学”为其理论基础,即:统计力学(含热力学)、经典力学、量子力学和电动力学。关于这些,我这里不必过多论述,因为它们早被大量的实验证实了。当然,这里有必要一提的是,对于“复杂流体”,很多时候,人们在研究它们的物理性质时,并不考虑微观的量子效应,这并非说它不满足“量子力学”,仅仅是因为所考虑的性质中,“量子效应”不显著,故而不予考虑。

那么,表象上与“复杂流体”类似的“经济市场”是否也以类似的“四大力学”为其理论基础呢?作为经济物理学领域的研究人员,提出这个问题应该是非常有意义的。这个问题若能讨论清楚,那么我们也就为“‘经济市场’是否果真是‘复杂流体’之一种”这个命题找到了科学的答案;更为重要的是,若能清楚回答这个问题,可能有助于人们效仿传统物理学,按图索骥,深入开展经济物理方面的研究工作。对此,我个人的看法是这样的:“统计力学”在“经济市场”中功效显著,这个已经是不争的事实。自20 世纪90 年代初以来,斯坦利教授及其合作者已经在此领域做出卓越贡献。“统计力学”中的一些标度、相变等图像,在“经济市场”中皆已被完美地揭示出来,这些对理解实际市场有着举足轻重的意义。故而,我们可以很有信心地说:“统计力学”是“经济市场”的理论基础之一。

“经典力学”在“经济市场”中的贡献,也早为人知。许多传统经济学理论都是基于“供求平衡”提出的,而“供求平衡”正源于“经典力学”中的“受力平衡”。考虑到“经济市场”中“看不见的手”的作用,人们认为,正是这只手引导着市场实现了“供求平衡”。但是,这个“引导力”显然不是“经典力学”中牛顿的三个定律能够简单描述的,因为这个“引导力”是一种“等效力”,它是各种相关“作用”的“合力”,有点类似于“经典力学”中力的合成与分解。从等效的意义上看,我们似乎也可以说,“经典力学”也是“经济市场”成立的理论基础之一。

“量子力学”在“经济市场”中的可能功效,已经有大量的研究。这些研究得到一些学者的狂热追捧,同时,也得到不少学者的无情抨击。类似的争论,在一门新学科诞生之初是非常常见的,不足为怪,就是“量子力学”本身也有此遭遇,“量子力学”诞生之初的不少争议已经构成了科学史上浓墨重彩的、妙趣横生的一页,例如玻尔与爱因斯坦两位大牛之间近40 年的争辩等。我认为,当前这些横亘于“量子力学”与“经济市场”之间的争论,并不妨碍“量子力学”成为“经济市场”得以运行的可能的物理基础之一。——对如此年轻的一个研究方向,我又怎么忍心随便否定“她”、扼杀“她”于摇篮之中呢?若无坚如磐石的否定证据,当前我唯有对“她”网开一面。在这个方面,我期望看到更多的争论,这些争论最终可能使得“量子力学”光明正大地登上“经济市场”的殿堂,也可能把“量子力学”彻底驱离“经济市场”的大舞台。

“电动力学”在“经济市场”中的功效,通常不被人注意,至少没有系统地注意过。我们知道,“电动力学”中最重要的物理图像之一就是“场”(如:电场)。处于“场”中的物体,场对它的作用与它对场的反作用,皆可通过麦克斯韦方程组,结合适当的边界条件研究之。其实,研究“经济市场”时,外部信息对“行为人”的影响亦可视为一种“场”的作用,“行为人”在这种“外场”的作用下,调整策略,开展相关的经济活动,其结果亦对“外场”有反作用。当然,这里我们不能简单地应用麦克斯韦方程组来研究,但是,这些思路为人们构建基于行为人的模拟,开展可控实验研究,确实大有裨益,——尽管这些思路还不成熟。鉴此,我同样认为“电动力学”可以成为“经济市场”得以运行的物理基础之一。当然,倘要我这里的结论非常坚实,仍需更多实质性的研究成果横空出世!

因为物理学家系统地介入经济市场的研究,也就十几年时间,所以,作为一门年轻的交叉学科,亟需进一步的发展。尽管上文阐述了“经济市场”中可能存在的理论基础——“四大力学”,这绝不意味着“四大力学”中所有传统物理规律皆对研究经济市场适用,或可原封不动地照搬套用。需知,我这里比较“经济市场”与“复杂流体”,这绝非目的,仅是期望两者之间建立关系,以便通过类比等研究手法,为更多的突破做好催生的工作。也许,憧憬如斯,实与痴人说梦无异?这里,还得一提的是,这些类比的目的也仅仅是论述“经济物理”与“复杂流体”之间的交叉研究是很有价值的,而不是论述根据“复杂流体”进行类推在定量研究中是正确的。故而,期待这些类比有助于人们探索出更多的、有意义的新课题。也正因为这些目的的客观存在,所以,倘若有人进一步问我:为什么“经济市场”属于“复杂流体”,而不属于“复杂非流体”(或其他)?对于这样的问题,我暂时无法回答,因为区分“复杂流体”和“复杂非流体”与此处目的之间的关系并不大。换言之,只要我们愿意,我们可以说“经济市场”是任何东西,但这么说的唯一前提应该是:是否已经或即将有助正确理解经济市场?如果答案是肯定的,那我们就有继续下去的理由。最后,话说回头,即便人们不把“经济市场”归入“复杂流体”中思考、研究(从研究的多样性角度看,这样的行为理当被允许),但是,它们二者都隶属于“复杂系统”这个大家庭,这却是众所周知的事实——简单说来,复杂系统就是指介于规则系统与无规系统之间的系统。据此,研究复杂系统的一些思想、方法等也许还是可以为两者的互通提供便利的……

三、能否准确预测是检验经济物理学理论正确与否的唯一判据

1976 年诺贝尔经济学奖得主弗里德曼(M. Friedman)在他的《实证经济学的方法论》(The Methodology of Positive Economics)中给出了检验经济学理论正确与否的判据是:能否准确预测。因此,要想使得经济物理学理论能够为传统经济学家心悦诚服地接受,能否准确预测也应是经济物理学理论正确与否的唯一判据。但是,这里值得提及的是,正如弗里德曼指出的那样,这里的预测并非单纯预测未来即将发生的事情,还包括预测过去已经发生的事情,当然,前提条件是对这件事情所作的观察尚未进行,或者是虽然对这一事情的观察已经作出,但是,进行预测的人并不知晓。

『伍』 一股湍流怎么读~。,

一股 yī gǔ
湍流 tuān liú
希望能帮到你,请采纳正确答案.
你的点赞或采纳是我继续帮助其他人的动力

『陆』 世界有多少是混沌的

吸引人的名称——“混沌"(chaotic),就像这年头许多事一 样,混沌这概念已被过分夸大了。大部分的自然系统并不 是混沌的,但其中有足够多的理由使这主题吸引人;最有意 思的问题是,关于混沌与非混沌行为之间的分野,哪些算在这一边,哪些算在那一边?首先,我们讨论一下混沌系统是什么,以及在什么情况 下它是不可预测的。想像一个实验,把一些小木片扔进河 里。

自从发现混沌系统,就出现另一个在科学家之间讨论 的问题。自然界中哪些系统是混沌系统?有些回答是很明 显的——湍急的水流、股票市场、天气,几乎都确定是混沌 的。但其他的答案则会令人惊异,

例如,近来有些科学家称 太阳系——牛顿可预测性的最典型代表——有许多特性可 能是混沌的,追踪行星轨迹和它们之间所有重力复杂的电 脑模型,显示了在数亿年时间里,行星的轨道很可能是混沌 的Q这类结论是源自一些研究,先从一个起始位置预测久 远的未来行星的轨道,然后把行星位置假设挪动几英寸后 重新预测,结果似乎显示出完全类似于湍流中小木片的那 类发散现象。关于电脑对太阳系的模拟结果是混沌的,这一点并没有疑义。但我怀疑,这些模拟是否真正代表我们 生活在其中的世界?

但是我也不想让你以为,混沌的存在对于科学是完全 起着负面效应的。对于新发现一向是这样的:人们已经在 思考如何利用这现象。例如,混沌系统非常适用于密码的 生成。如果两个人都知道描述某个混沌系统的方程式,就 可以用它为某个密码的基础。

他们可以用这方程式发出让 其他人认定是一连串随意信息,而仅是他们自己能够了解 的信息。同样地,有些科学家将来可能离开他们学术工作 岗位,因为他们相信能够利用自己在混沌研究上的专长来 了解股票市场(我要亲眼看到这些人一面开着劳斯莱斯轿 车,一面继续在股市中发大财时,才会相信这是明智之举)。

『柒』 cfd是什么意思

1,CFD,英语全称(Computational Fluid Dynamics),即计算流体动力学。CFD是近代流体力学,数值数学和计算机科学结合的产物,是一门具有强大生命力的交叉科学。

2,“中央大厨房”的英文缩写为“Central Food Depot”,含义是集中式的食品补给中心,业态为实行“6-12”营业时间的熟食便利店。

3,CFD旱地冰球中心,英文名China Floorball Development (Center),简称CFD,CFD旱地冰球中心于2013年成立,随后将旱地冰球项目推进到全国近80所高校,100多所中小学,社会俱乐部超过100家,培训旱地冰球教练员600多名。



(7)湍流和股票市场扩展阅读:

CFD是计算流体力学(Computational Fluid Dynamics)的简称,是流体力学和计算机科学相互融合的一门新兴交叉学科,它从计算方法出发,利用计算机快速的计算能力得到流体控制方程的近似解。

CFD兴起于20世纪60年代,随着90年代后计算机的迅猛发展,CFD得到了飞速发展,逐渐与实验流体力学一起成为产品开发中的重要手段。

『捌』 哪位能推荐几个用于机床上的国产力传感器的型号,只需测Z向力即可,拜谢~

计算机图形学是随着计算机及其外围设备而产生和发展起来的,作为计算机科学与技术学科的一个独立分支已经历了近40年的发展历程。一方面,作为一个学科,计算机图形学在图形基础算法、图形软件与图形硬件三方面取得了长足的进步,成为当代几乎所有科学和工程技术领域用来加强信息理解和传递的技术和工具。另一方面,计算机图形学的硬件和软件本身已发展成为一个巨大的产业。
1.计算机图形学活跃理论及技术
(1)分形理论及应用
分形理论是当今世界十分活跃的新理论。作为前沿学科的分形理论认为,大自然是分形构成的。大千世界,对称、均衡的对象和状态是少数和暂时的,而不对称、不均衡的对象和状态才是多数和长期的,分形几何是描述大自然的几何学。作为人类探索复杂事物的新的认知方法,分形对于一切涉及组织结构和形态发生的领域,均有实际应用意义,并在石油勘探、地震预测、城市建设、癌症研究、经济分析等方面取得了不少突破性的进展。分形的概念是美籍数学家曼德布罗特(B.B.Mandelbrot)率先提出的。1967年他在美国《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。
海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。它无法用常规的、传统的几何方法描述。我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是部局形态和整体形态的相似。在没有建筑物或其他东西作为参照物时,在空中拍摄的100公里长的海岸线与放大了的10公里长海岸线的两张照片,看上去十分相似。
曾有人提出了这样一个显然是荒谬的命题:“英国的海岸线的长度是无穷大。”其论证思路是这样的:海岸线是破碎曲折的,我们测量时总是以一定的尺度去量得某个近似值,例如,每隔100米立一个标杆,这样,我们测得的是一个近似值,是沿着一条折线计算而得出的近似值,这条折线中的每一段是一条长为100米的直线线段。如果改为每10米立一个标杆,那么实际量出的是另一条折线的长度,它的每一个片段长10米。显然,后一次量出的长度将大于前一次量出的长度。如果我们不断缩小尺度,所量出的长度将会越来越大。这样一来,海岸线的长度不就成为无穷大了吗?
为什么会出现这样的结论呢?曼德布罗特提出了一个重要的概念:分数维,又称分维。一般来说,维数都是整数,直线线段是一维的图形,正方形是二维的图形。在数学上,把欧氏空间的几何对象连续地拉伸、压缩、扭曲,维数也不变,这就是拓扑维数。然而,这种维数观并不能解决海岸线的长度问题。曼德布罗特是这样描述一个绳球的维数的:从很远的距离观察这个绳球,可看作一点(零维);从较近的距离观察,它充满了一个球形空间(三维);再近一些,就看到了绳子(一维);再向微观深入,绳子又变成了三维的柱,三维的柱又可分解成一维的纤维。那么,介于这些观察点之间的中间状态又如何呢?显然,并没有绳球从三维对象变成一维对象的确切界限。英国的海岸线为什么测不准?因为欧氏一维测度与海岸线的维数不一致。根据曼德布罗特的计算,英国海岸线的维数为1.26。有了分维的概念,海岸线的长度就可以确定了。
1975年,曼德布罗特发现:具有自相似性的形态广泛存在于自然界中,如连绵的山川、飘浮的云朵、岩石的断裂口、布朗粒子运动的轨迹、树冠、花菜、大脑皮层……曼德布罗特把这些部分与整体以某种方式相似的形体称为分形(Fractal),这个单词由拉丁语Frangere衍生而成,该词本身具有“破碎”、“不规则”等含义。
曼德布罗特的研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构。Mandelbrot集合图形的边界处,具有无限复杂和精细的结构。在此基础上,形成了研究分形性质及其应用的科学,称为分形理论(Fractal theory)或分形几何学(Fractal geometry)。
分形的特点和理论贡献
数学上的分形有以下几个特点:
(1)具有无限精细的结构;
(2)比例自相似性;
(3)一般它的分数维大于它的拓扑维数;
(4)可以由非常简单的方法定义,并由递归、迭代产生等。
(1)(2)两项说明分形在结构上的内在规律性。自相似性是分形的灵魂,它使得分形的任何一个片段都包含了整个分形的信息。第(3)项说明了分形的复杂性,第(4)项则说明了分形的生成机制。
我们把传统几何的代表欧氏几何与以分形为研究对象的分形几何做一比较,可以得到这样的结论:欧氏几何是建立在公理之上的逻辑体系,其研究的是在旋转、平移、对称变换下各种不变的量,如角度、长度、面积、体积,其适用范围主要是人造的物体;而分形由递归、迭代生成,主要适用于自然界中形态复杂的物体,分形几何不再以分离的眼光看待分形中的点、线、面,而是把它们看成一个整体。
我们可以从分形图案的特点去理解分形几何。分形图案有一系列有趣的特点,如自相似性、对某些变换的不变性、内部结构的无限性等。此外,分形图案往往和一定的几何变换相联系,在一些变化下,图案保持不变,从任意的初始状态出发,经过若干次的几何变换,图形将固定在这个特定的分形图案上,而不再发生变化。自相似原则和迭代生成原则是分形理论的重要原则。

分形理论发展了维数的概念。在发现分数维以前,人们习惯于将点定义为零维,直线为一维,平面为二维,空间为三维,爱因斯坦在相对论中引入时间维,就形成四维时空。对某一问题给予多方面的考虑,可建立高维空间,但都是整数维。
分形是20世纪涌现出的新的科学思想和对世界认识的新视角。从理论上讲,它是数学思想的新发展,是人类对于维数、点集等概念的理解的深化与推广。同时它又与现实的物理世界紧密相连,成为研究混沌(Chaos)现象的重要工具。众所周知,对混沌现象的研究正是现代理论物理学的前沿和热点之一。
由于分形的研究,人们对于随机性和确定性的辩证关系有了进一步的理解。同样对于过程和状态的联系,对于宏观和微观的联系,对于层次之间的转化,对于无限性的丰富多采,也都产生了有益的影响。
分形理论还是非线性科学的前沿和重要分支,作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识局部来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态和秩序;三是分形从特定层面揭示了世界普遍联系和统一的图景。
分形学的应用领域
除了理论上的意义之外,在实际应用中,分形也显示了巨大的潜力,它已经在许多领域中得到有效的应用,其应用范围之广、效益之明显远远超过了十几年前的任何预测。目前大量分形方法的应用案例层出不穷。这些案例涉及的领域包括:生命过程进化,生态系统,数字编码和解码,数论,动力系统,理论物理(如流体力学和湍流) 等方面,此外,还有人利用分形学做城市规则和地震预报。
分形技术在数据压缩中的应用是一个非常典型的例子。美国数学会会刊在1996年6月的刊物上发表了巴斯利的文章《利用分形进行图形压缩》,他把分形用于光盘制作的图形压缩中。一般来说,我们总是把一个图形作为像素的集合来加以存储和处理。一张最普通的图片也常常涉及几十万乃至上百万像素,从而占据大量的存储空间,传输速度也大大受到限制。巴斯利运用了分形中的一个重要思想:分形图案是与某种变换相联系的,我们可以把任何一个图形看作是某种变换反复迭代的产物。因此,存储一个图形,只需存储有关这些变换过程的信息,而无需存储图形的全部像素信息。只要找到这个变换过程,图形就可以准确地再现出来,而不必去存储大量的像素信息。使用这种方法,在实际的应用中,已经达到了压缩存储空间至原来1/8的效果。
近年来,由分形理论发展起来的分形艺术(Fractal Art,FA),在表现形式和分形几何的理解等方面亦取得了突破性的进展。分形艺术是二维可视艺术,在许多方面类似于摄影。分形图像作品一般是通过计算机屏幕和打印机来展现的。分形艺术中的另一个重要部分便是分形音乐,分形音乐是由一个算法的多重迭代产生的。自相似是分形几何的本质,有人利用这一原理来建构一些带有自相似小段的合成音乐,主题在带有小调的三番五次的反复循环中重复,在节奏方面可以加上一些随机变化。我们常见的计算机屏幕保护程序,许多也是通过分形计算而得来的。
进入1990年代以来,人们开始越来越多地利用这一理论研究经济领域的一些问题,主要集中在对金融市场(如股票市场、外汇市场等)的研究。操纵者可以通过在若干时间点上的操纵使股价在微观尺度上发生所希望的变化;从时间的宏观尺度上来看,要使股价发生所希望的变化,就要求操纵者具有相当的经济实力。从分形的角度来看,股票价格具有分形特征。一方面,股价具有复杂的微观结构;另一方面,它具有对时间的标度不变性,即在不同的观测尺度下具有相似的结构,其结构是复杂和简单、不规则和有序的统一。对股价操纵者来说,要在单个时间点上影响股价并不难,即使是在大的时间尺度上影响股价也是有可能的,但是要想通过人为的操纵,在影响股价的同时,保持股价在时间的微观和宏观尺度上的一致性,在技术上就会显得非常困难。

(2) 曲面造型技术。它是计算机图形学和计算机辅助几何设计(Computer Aided Geometric Design)的一项重要内容,主要研究在计算机图象系统的环境下对曲面的表示、设计、显示和分析。它肇源于飞机、船舶的外形放样工艺,由Coons、Bezier等大师于六十年代奠定理论基础。经三十多年发展,现在它已经形成了以Bezier和B样条方法为代表的参数化特征设计和隐式代数曲面表示这两类方法为主体,以插值(Interpolation) 、拟合(Fitting) 、逼近(Approximation)这三种手段为骨架的几何理论体系。随着计算机图形显示对于真实性、实时性和交互性要求的日益增强,随着几何设计对象向着多样性、特殊性和拓扑结构复杂性靠拢的趋势的日益明显,随着图形工业和制造工业迈向一体化、集成化和网络化步伐的日益加快,随着激光测距扫描等三维数据采样技术和硬件设备的日益完善,曲面造型在近几年来得到了长足的发展。这主要表现在研究领域的急剧扩展和表示方法的开拓创新。
一.从研究领域来看,曲面造型技术已从传统的研究曲面表示、曲面求交和曲面拼接,扩充到曲面变形、曲面重建、曲面简化、曲面转换和曲面位差。
曲面变形(Deformation or Shape Blending): 传统的非均匀有理B样条(NURBS)曲面模型,仅允许调整控制顶点或权因子来局部改变曲面形状,至多利用层次细化模型在曲面特定点进行直接操作;一些简单的基于参数曲线的曲面设计方法,如扫掠法(Sweeping),蒙皮法(Skinning),旋转法和拉伸法,也仅允许调整生成曲线来改变曲面形状。计算机动画业和实体造型业迫切需要发展与曲面表示方式无关的变形方法或形状调配方法,于是产生了自由变形(FFD)法,基于弹性变形或热弹性力学等物理模型(原理)的变形法,基于求解约束的变形法,基于几何约束的变形法等曲面变形技术和基于多面体对应关系或基于图象形态学中Minkowski和操作的曲面形状调配技术。最近,笔者及其学生刘利刚首创活动局部球面坐标插值的新思想,给出了空间点集内在变量的完整数学描述,从几何内在解的角度,设计了三维多面体和自由曲面形状调配的一整套快速有效的算法,画面流畅,交互实时,对三维曲面变形的技术难题实现了突破。

曲面重建(Reconstruction):在精致的轿车车身设计或人脸-类雕塑曲面的动画制作中,常用油泥制模,再作三维型值点采样。在医学图象可视化中,也常用CT切片来得到人体脏器表面的三维数据点。从曲面上的部分采样信息来恢复原始曲面的几何模型,称为曲面重建。采样工具为:激光测距扫描器,医学成象仪,接触探测数字转换器,雷达或地震勘探仪器等。根据重建曲面的形式,它可分为函数型曲面重建和离散型曲面重建这两类。
曲面简化(Simplification):与曲面重建一样,这一研究领域目前也是国际热点之一。其基本思想在于从三维重建后的离散曲面或造型软件的输出结果(主要是三角网格)中去除冗余信息而又保证模型的准确度,以利于图形显示的实时性、数据存储的经济性和数据传输的快速性。对于多分辨率曲面模型而言,这一技术还有利于建立曲面的层次逼近模型,进行曲面的分层显示,分层传输和分层编辑。具体的曲面简化方法有:网格顶点剔除法,网格边界删除法,网格优化法,最大平面逼近多边形法以及参数化重新采样法。
曲面转换(Conversion):同一张曲面可以表为不同的数学形式,这一思想不仅具有理论意义,而且具有工业应用的现实意义。例如,NURBS这种参数有理多项式曲面虽然包括了参数多项式曲面的一切优点,但也存在着微分运算繁琐费时、积分运算无法控制误差的局限性。而在曲面拼接及物性计算中,这两种运算是不可避免的。这就提出了把一张NURBS曲面转化成近似的多项式曲面的问题。同样的要求更体现在NURBS曲面设计系统与多项式曲面设计系统之间的数据传递和无纸化生产的工艺过程中。再如,在两张参数曲面的求交运算中,如果把其中一张曲面的NURBS形式转化为隐式,就容易得到方程的数值解。近几年来,国际图形界对曲面转换的研究主要集中在以下几方面:NURBS曲面用多项式曲面来逼近的算法及收敛性;Bezier曲线曲面的隐式化及其反问题;CONSURF飞机设计系统的Ball曲线向高维的各种推广形式的比较及互化;有理Bezier曲线曲面的降阶逼近算法及误差估计;NURBS曲面在三角域上与矩形域上的互相快速转化等。
曲面位差(Offset):也称为曲面等距性,它在计算机图形及加工中有广泛应用,因而成为这几年的热门课题之一。例如,数控机床的刀具路径设计就要研究曲线的等距性。但从数学表达式容易看出,一般而言,一条平面参数曲线的等距曲线不再是有理曲线,这就越出了通用的NURBS系统的使用范围,造成了软件设计的复杂性和数值计算的不稳定。
二.从表示方法来看,以网格细分(Subdivision)为特征的离散造型与传统的连续造型相比,大有后来居上的创新之势。而且,这种曲面造型方法在生动逼真的特征动画和雕塑曲面的设计加工中如鱼得水,得到了高度的运用。
在1998年荣获奥斯卡大奖的电影作品中,有一个短片赫然在列,这就是美国著名的Pixar动画电影制片厂选送的作品"Geri's Game"。动画片描述了一个名叫Geri的老头,在公园里自己与自己下国际象棋,千方百计想取胜的诙谐故事。画面中人物和景色的造型细致生动,与故事情节浑然一体,使观众得到真正的美学享受。而这部动画片制作中的设计者,就是以上论文的作者,著名的计算机图形学家T.DeRose。DeRose在SIGGRAPH'98大会上报告的论文讲到了选用C-C细分曲面作为Geri老头特征造型模型的背景。他指出,NURBS尽管早已被国际标准组织ISO作为定义工业产品数据交换的STEP标准,在工业造型和动画制作中得到了广泛的应用,但仍然存在着局限性。单一的NURBS曲面,如其他参数曲面一样,限于表示在拓扑上等价于一张纸,一个圆柱面或一个圆环面的曲面,不能表示任意拓扑结构的曲面。为了表达特征动画中更复杂的形状,如人的头,人的手或人的服饰,我们面临着一场技术挑战。当然,我们可以用最普通的复杂光滑曲面的造型方法,例如对NURBS的修剪(Trimming)来对付。确实,目前已经存在一些商用系统,诸如Alias-Wavefront和SoftImage等可以做到这一点,但是它们至少会遭遇到以下的困难:第一,修剪是昂贵的,而且有数值误差;第二,要在曲面的接缝处保持光滑,即使是近似的平滑也是困难的,因为模型是活动的。而细分曲面有潜力克服以上两个困难,它们无须修剪,没有缝,活动模型的平滑度被自动地保证。DeRose成功地应用了C-C的细分曲面造型法,同时发明了构造光滑的变半径的轮廓线及合成物的实际技术,提出了在服饰模型中碰撞检测的有效新算法,构造了关于细分曲面的光滑因子场方法。凭借这些数学和软件基础,他形象逼真地表现了Geri老头的头壳,手指和衣服,包括茄克衫,裤子,领带和鞋子。这些都是传统的NURBS连续曲面造型所不易做到的。那么,C-C细分曲面是怎样构造的呢?它与传统的Doo-Sabin细分曲面异曲同工,都是从一个称之为控制网格(网格多半可用激光从手工模型上输入)的多面体开始,递归地计算新网格上的每个顶点,这些顶点都是原网格上某几个顶点的加权平均。如果多面体的一个面有n条边,细分一次后,这个面就会变成n个四边形。随着细分的不断进行,控制网格就被逐渐磨光,其极限状态就是一张自由曲面。它是无缝的,因而是平滑的,即使模型是活动的。这种方法显著地压缩了设计和建立一个原始模型的时间。更重要的,允许原始模型局部地精制化。这就是它优于连续曲面造型方法之处. C-C细分是基于四边形的,而Loop曲面(1987年),蝶形曲面(1990年)是基于三角形的。它们都一样受到当今图形工作者的重用。
(3)计算机辅助设计与制造(CAD/CAM)。 这是一个最广泛,最活跃的应用领域。计算机辅助设计(Computer Aided Design,CAD)是利用计算机强有力的计算功能和高效率的图形处理能力,辅助知识劳动者进行工程和产品的设计与分析,以达到理想的目的或取得创新成果的一种技术。它是综合了计算机科学与工程设计方法的最新发展而形成的一门新兴学科。计算机辅助设计技术的发展是与计算机软件、硬件技术的发展和完善,与工程设计方法的革新紧密相关的。采用计算机辅助设计已是现代工程设计的迫切需要。CAD技术目前已广泛应用于国民经济的各个方面,其主要的应用领域有以下几个方面。
1.制造业中的应用
CAD技术已在制造业中广泛应用,其中以机床、汽车、飞机、船舶、航天器等制造业应用最为广泛、深入。众所周知,一个产品的设计过程要经过概念设计、详细设计、结构分析和优化、仿真模拟等几个主要阶段。

同时,现代设计技术将并行工程的概念引入到整个设计过程中,在设计阶段就对产品整个生命周期进行综合考虑。当前先进的CAD应用系统已经将设计、绘图、分析、仿真、加工等一系列功能集成于一个系统内。现在较常用的软件有UG II、I-DEAS、CATIA、PRO/E、Euclid等CAD应用系统,这些系统主要运行在图形工作站平台上。在PC平台上运行的CAD应用软件主要有Cimatron、Solidwork、MDT、SolidEdge等。由于各种因素,目前在二维CAD系统中Autodesk公司的AutoCAD占据了相当的市场。
2.工程设计中的应用
CAD技术在工程领域中的应用有以下几个方面:
(1)建筑设计,包括方案设计、三维造型、建筑渲染图设计、平面布景、建筑构造设计、小区规划、日照分析、室内装潢等各类CAD应用软件。
(2)结构设计,包括有限元分析、结构平面设计、框/排架结构计算和分析、高层结构分析、地基及基础设计、钢结构设计与加工等。
(3)设备设计,包括水、电、暖各种设备及管道设计。
(4)城市规划、城市交通设计,如城市道路、高架、轻轨、地铁等市政工程设计。
(5)市政管线设计,如自来水、污水排放、煤气、电力、暖气、通信(包括电话、有线电视、数据通信等)各类市政管道线路设计。
(6)交通工程设计,如公路、桥梁、铁路、航空、机场、港口、码头等。
(7)水利工程设计,如大坝、水渠、河海工程等。
(8)其他工程设计和管理,如房地产开发及物业管理、工程概预算、施工过程控制与管理、旅游景点设计与布置、智能大厦设计等。
3.电气和电子电路方面的应用
CAD技术最早曾用于电路原理图和布线图的设计工作。目前,CAD技术已扩展到印刷电路板的设计(布线及元器件布局),并在集成电路、大规模集成电路和超大规模集成电路的设计制造中大显身手,并由此大大推动了微电子技术和计算及技术的发展。
4.仿真模拟和动画制作
应用CAD技术可以真实地模拟机械零件的加工处理过程、飞机起降、船舶进出港口、物体受力破坏分析、飞行训练环境、作战方针系统、事故现场重现等现象。在文化娱乐界已大量利用计算机造型仿真出逼真的现实世界中没有的原始动物、外星人以及各种场景等,并将动画和实际背景以及演员的表演天衣无缝地合在一起,在电影制作技术上大放异彩,拍制出一个个激动人心的巨片。
5.其他应用
CAD技术除了在上述领域中的应用外,在轻工、纺织、家电、服装、制鞋、医疗和医药乃至体育方面都会用到CAD技术
CAD标准化体系进一步完善;系统智能化成为又一个技术热点;集成化成为CAD技术发展的一大趋势;科学计算可视化、虚拟设计、虚拟制造技术是20世纪90年代CAD技术发展的新趋向。
经过了一阶段计算机图形学的学习,对于图形学中基本图形的生成算法有了一定的了解。深度研究图形学,需要高深的数学知识,且每一个细化的方向需要的知识也不一样。图形学是计算机科学与技术学科的活跃前沿学科,被广泛的应用到生物学、物理学、化学、天文学、地球物理学、材料科学等领域。我深深感到这门学科涉及的领域之广是惊人的,可以说博大精深。
还不错,希望你采纳。

『玖』 哪位高手知道计算机图形学的应用前景越详细越好。拜谢!

计算机图形学是随着计算机及其外围设备而产生和发展起来的,作为计算机科学与技术学科的一个独立分支已经历了近40年的发展历程。一方面,作为一个学科,计算机图形学在图形基础算法、图形软件与图形硬件三方面取得了长足的进步,成为当代几乎所有科学和工程技术领域用来加强信息理解和传递的技术和工具。另一方面,计算机图形学的硬件和软件本身已发展成为一个巨大的产业。
1.计算机图形学活跃理论及技术
(1)分形理论及应用
分形理论是当今世界十分活跃的新理论。作为前沿学科的分形理论认为,大自然是分形构成的。大千世界,对称、均衡的对象和状态是少数和暂时的,而不对称、不均衡的对象和状态才是多数和长期的,分形几何是描述大自然的几何学。作为人类探索复杂事物的新的认知方法,分形对于一切涉及组织结构和形态发生的领域,均有实际应用意义,并在石油勘探、地震预测、城市建设、癌症研究、经济分析等方面取得了不少突破性的进展。分形的概念是美籍数学家曼德布罗特(B.B.Mandelbrot)率先提出的。1967年他在美国《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。
海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。它无法用常规的、传统的几何方法描述。我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是部局形态和整体形态的相似。在没有建筑物或其他东西作为参照物时,在空中拍摄的100公里长的海岸线与放大了的10公里长海岸线的两张照片,看上去十分相似。
曾有人提出了这样一个显然是荒谬的命题:“英国的海岸线的长度是无穷大。”其论证思路是这样的:海岸线是破碎曲折的,我们测量时总是以一定的尺度去量得某个近似值,例如,每隔100米立一个标杆,这样,我们测得的是一个近似值,是沿着一条折线计算而得出的近似值,这条折线中的每一段是一条长为100米的直线线段。如果改为每10米立一个标杆,那么实际量出的是另一条折线的长度,它的每一个片段长10米。显然,后一次量出的长度将大于前一次量出的长度。如果我们不断缩小尺度,所量出的长度将会越来越大。这样一来,海岸线的长度不就成为无穷大了吗?
为什么会出现这样的结论呢?曼德布罗特提出了一个重要的概念:分数维,又称分维。一般来说,维数都是整数,直线线段是一维的图形,正方形是二维的图形。在数学上,把欧氏空间的几何对象连续地拉伸、压缩、扭曲,维数也不变,这就是拓扑维数。然而,这种维数观并不能解决海岸线的长度问题。曼德布罗特是这样描述一个绳球的维数的:从很远的距离观察这个绳球,可看作一点(零维);从较近的距离观察,它充满了一个球形空间(三维);再近一些,就看到了绳子(一维);再向微观深入,绳子又变成了三维的柱,三维的柱又可分解成一维的纤维。那么,介于这些观察点之间的中间状态又如何呢?显然,并没有绳球从三维对象变成一维对象的确切界限。英国的海岸线为什么测不准?因为欧氏一维测度与海岸线的维数不一致。根据曼德布罗特的计算,英国海岸线的维数为1.26。有了分维的概念,海岸线的长度就可以确定了。
1975年,曼德布罗特发现:具有自相似性的形态广泛存在于自然界中,如连绵的山川、飘浮的云朵、岩石的断裂口、布朗粒子运动的轨迹、树冠、花菜、大脑皮层……曼德布罗特把这些部分与整体以某种方式相似的形体称为分形(Fractal),这个单词由拉丁语Frangere衍生而成,该词本身具有“破碎”、“不规则”等含义。
曼德布罗特的研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构。Mandelbrot集合图形的边界处,具有无限复杂和精细的结构。在此基础上,形成了研究分形性质及其应用的科学,称为分形理论(Fractal theory)或分形几何学(Fractal geometry)。
分形的特点和理论贡献
数学上的分形有以下几个特点:
(1)具有无限精细的结构;
(2)比例自相似性;
(3)一般它的分数维大于它的拓扑维数;
(4)可以由非常简单的方法定义,并由递归、迭代产生等。
(1)(2)两项说明分形在结构上的内在规律性。自相似性是分形的灵魂,它使得分形的任何一个片段都包含了整个分形的信息。第(3)项说明了分形的复杂性,第(4)项则说明了分形的生成机制。
我们把传统几何的代表欧氏几何与以分形为研究对象的分形几何做一比较,可以得到这样的结论:欧氏几何是建立在公理之上的逻辑体系,其研究的是在旋转、平移、对称变换下各种不变的量,如角度、长度、面积、体积,其适用范围主要是人造的物体;而分形由递归、迭代生成,主要适用于自然界中形态复杂的物体,分形几何不再以分离的眼光看待分形中的点、线、面,而是把它们看成一个整体。
我们可以从分形图案的特点去理解分形几何。分形图案有一系列有趣的特点,如自相似性、对某些变换的不变性、内部结构的无限性等。此外,分形图案往往和一定的几何变换相联系,在一些变化下,图案保持不变,从任意的初始状态出发,经过若干次的几何变换,图形将固定在这个特定的分形图案上,而不再发生变化。自相似原则和迭代生成原则是分形理论的重要原则。

分形理论发展了维数的概念。在发现分数维以前,人们习惯于将点定义为零维,直线为一维,平面为二维,空间为三维,爱因斯坦在相对论中引入时间维,就形成四维时空。对某一问题给予多方面的考虑,可建立高维空间,但都是整数维。
分形是20世纪涌现出的新的科学思想和对世界认识的新视角。从理论上讲,它是数学思想的新发展,是人类对于维数、点集等概念的理解的深化与推广。同时它又与现实的物理世界紧密相连,成为研究混沌(Chaos)现象的重要工具。众所周知,对混沌现象的研究正是现代理论物理学的前沿和热点之一。
由于分形的研究,人们对于随机性和确定性的辩证关系有了进一步的理解。同样对于过程和状态的联系,对于宏观和微观的联系,对于层次之间的转化,对于无限性的丰富多采,也都产生了有益的影响。
分形理论还是非线性科学的前沿和重要分支,作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识局部来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态和秩序;三是分形从特定层面揭示了世界普遍联系和统一的图景。
分形学的应用领域
除了理论上的意义之外,在实际应用中,分形也显示了巨大的潜力,它已经在许多领域中得到有效的应用,其应用范围之广、效益之明显远远超过了十几年前的任何预测。目前大量分形方法的应用案例层出不穷。这些案例涉及的领域包括:生命过程进化,生态系统,数字编码和解码,数论,动力系统,理论物理(如流体力学和湍流) 等方面,此外,还有人利用分形学做城市规则和地震预报。
分形技术在数据压缩中的应用是一个非常典型的例子。美国数学会会刊在1996年6月的刊物上发表了巴斯利的文章《利用分形进行图形压缩》,他把分形用于光盘制作的图形压缩中。一般来说,我们总是把一个图形作为像素的集合来加以存储和处理。一张最普通的图片也常常涉及几十万乃至上百万像素,从而占据大量的存储空间,传输速度也大大受到限制。巴斯利运用了分形中的一个重要思想:分形图案是与某种变换相联系的,我们可以把任何一个图形看作是某种变换反复迭代的产物。因此,存储一个图形,只需存储有关这些变换过程的信息,而无需存储图形的全部像素信息。只要找到这个变换过程,图形就可以准确地再现出来,而不必去存储大量的像素信息。使用这种方法,在实际的应用中,已经达到了压缩存储空间至原来1/8的效果。
近年来,由分形理论发展起来的分形艺术(Fractal Art,FA),在表现形式和分形几何的理解等方面亦取得了突破性的进展。分形艺术是二维可视艺术,在许多方面类似于摄影。分形图像作品一般是通过计算机屏幕和打印机来展现的。分形艺术中的另一个重要部分便是分形音乐,分形音乐是由一个算法的多重迭代产生的。自相似是分形几何的本质,有人利用这一原理来建构一些带有自相似小段的合成音乐,主题在带有小调的三番五次的反复循环中重复,在节奏方面可以加上一些随机变化。我们常见的计算机屏幕保护程序,许多也是通过分形计算而得来的。
进入1990年代以来,人们开始越来越多地利用这一理论研究经济领域的一些问题,主要集中在对金融市场(如股票市场、外汇市场等)的研究。操纵者可以通过在若干时间点上的操纵使股价在微观尺度上发生所希望的变化;从时间的宏观尺度上来看,要使股价发生所希望的变化,就要求操纵者具有相当的经济实力。从分形的角度来看,股票价格具有分形特征。一方面,股价具有复杂的微观结构;另一方面,它具有对时间的标度不变性,即在不同的观测尺度下具有相似的结构,其结构是复杂和简单、不规则和有序的统一。对股价操纵者来说,要在单个时间点上影响股价并不难,即使是在大的时间尺度上影响股价也是有可能的,但是要想通过人为的操纵,在影响股价的同时,保持股价在时间的微观和宏观尺度上的一致性,在技术上就会显得非常困难。

(2) 曲面造型技术。它是计算机图形学和计算机辅助几何设计(Computer Aided Geometric Design)的一项重要内容,主要研究在计算机图象系统的环境下对曲面的表示、设计、显示和分析。它肇源于飞机、船舶的外形放样工艺,由Coons、Bezier等大师于六十年代奠定理论基础。经三十多年发展,现在它已经形成了以Bezier和B样条方法为代表的参数化特征设计和隐式代数曲面表示这两类方法为主体,以插值(Interpolation) 、拟合(Fitting) 、逼近(Approximation)这三种手段为骨架的几何理论体系。随着计算机图形显示对于真实性、实时性和交互性要求的日益增强,随着几何设计对象向着多样性、特殊性和拓扑结构复杂性靠拢的趋势的日益明显,随着图形工业和制造工业迈向一体化、集成化和网络化步伐的日益加快,随着激光测距扫描等三维数据采样技术和硬件设备的日益完善,曲面造型在近几年来得到了长足的发展。这主要表现在研究领域的急剧扩展和表示方法的开拓创新。
一.从研究领域来看,曲面造型技术已从传统的研究曲面表示、曲面求交和曲面拼接,扩充到曲面变形、曲面重建、曲面简化、曲面转换和曲面位差。
曲面变形(Deformation or Shape Blending): 传统的非均匀有理B样条(NURBS)曲面模型,仅允许调整控制顶点或权因子来局部改变曲面形状,至多利用层次细化模型在曲面特定点进行直接操作;一些简单的基于参数曲线的曲面设计方法,如扫掠法(Sweeping),蒙皮法(Skinning),旋转法和拉伸法,也仅允许调整生成曲线来改变曲面形状。计算机动画业和实体造型业迫切需要发展与曲面表示方式无关的变形方法或形状调配方法,于是产生了自由变形(FFD)法,基于弹性变形或热弹性力学等物理模型(原理)的变形法,基于求解约束的变形法,基于几何约束的变形法等曲面变形技术和基于多面体对应关系或基于图象形态学中Minkowski和操作的曲面形状调配技术。最近,笔者及其学生刘利刚首创活动局部球面坐标插值的新思想,给出了空间点集内在变量的完整数学描述,从几何内在解的角度,设计了三维多面体和自由曲面形状调配的一整套快速有效的算法,画面流畅,交互实时,对三维曲面变形的技术难题实现了突破。

曲面重建(Reconstruction):在精致的轿车车身设计或人脸-类雕塑曲面的动画制作中,常用油泥制模,再作三维型值点采样。在医学图象可视化中,也常用CT切片来得到人体脏器表面的三维数据点。从曲面上的部分采样信息来恢复原始曲面的几何模型,称为曲面重建。采样工具为:激光测距扫描器,医学成象仪,接触探测数字转换器,雷达或地震勘探仪器等。根据重建曲面的形式,它可分为函数型曲面重建和离散型曲面重建这两类。
曲面简化(Simplification):与曲面重建一样,这一研究领域目前也是国际热点之一。其基本思想在于从三维重建后的离散曲面或造型软件的输出结果(主要是三角网格)中去除冗余信息而又保证模型的准确度,以利于图形显示的实时性、数据存储的经济性和数据传输的快速性。对于多分辨率曲面模型而言,这一技术还有利于建立曲面的层次逼近模型,进行曲面的分层显示,分层传输和分层编辑。具体的曲面简化方法有:网格顶点剔除法,网格边界删除法,网格优化法,最大平面逼近多边形法以及参数化重新采样法。
曲面转换(Conversion):同一张曲面可以表为不同的数学形式,这一思想不仅具有理论意义,而且具有工业应用的现实意义。例如,NURBS这种参数有理多项式曲面虽然包括了参数多项式曲面的一切优点,但也存在着微分运算繁琐费时、积分运算无法控制误差的局限性。而在曲面拼接及物性计算中,这两种运算是不可避免的。这就提出了把一张NURBS曲面转化成近似的多项式曲面的问题。同样的要求更体现在NURBS曲面设计系统与多项式曲面设计系统之间的数据传递和无纸化生产的工艺过程中。再如,在两张参数曲面的求交运算中,如果把其中一张曲面的NURBS形式转化为隐式,就容易得到方程的数值解。近几年来,国际图形界对曲面转换的研究主要集中在以下几方面:NURBS曲面用多项式曲面来逼近的算法及收敛性;Bezier曲线曲面的隐式化及其反问题;CONSURF飞机设计系统的Ball曲线向高维的各种推广形式的比较及互化;有理Bezier曲线曲面的降阶逼近算法及误差估计;NURBS曲面在三角域上与矩形域上的互相快速转化等。
曲面位差(Offset):也称为曲面等距性,它在计算机图形及加工中有广泛应用,因而成为这几年的热门课题之一。例如,数控机床的刀具路径设计就要研究曲线的等距性。但从数学表达式容易看出,一般而言,一条平面参数曲线的等距曲线不再是有理曲线,这就越出了通用的NURBS系统的使用范围,造成了软件设计的复杂性和数值计算的不稳定。
二.从表示方法来看,以网格细分(Subdivision)为特征的离散造型与传统的连续造型相比,大有后来居上的创新之势。而且,这种曲面造型方法在生动逼真的特征动画和雕塑曲面的设计加工中如鱼得水,得到了高度的运用。
在1998年荣获奥斯卡大奖的电影作品中,有一个短片赫然在列,这就是美国著名的Pixar动画电影制片厂选送的作品"Geri's Game"。动画片描述了一个名叫Geri的老头,在公园里自己与自己下国际象棋,千方百计想取胜的诙谐故事。画面中人物和景色的造型细致生动,与故事情节浑然一体,使观众得到真正的美学享受。而这部动画片制作中的设计者,就是以上论文的作者,著名的计算机图形学家T.DeRose。DeRose在SIGGRAPH'98大会上报告的论文讲到了选用C-C细分曲面作为Geri老头特征造型模型的背景。他指出,NURBS尽管早已被国际标准组织ISO作为定义工业产品数据交换的STEP标准,在工业造型和动画制作中得到了广泛的应用,但仍然存在着局限性。单一的NURBS曲面,如其他参数曲面一样,限于表示在拓扑上等价于一张纸,一个圆柱面或一个圆环面的曲面,不能表示任意拓扑结构的曲面。为了表达特征动画中更复杂的形状,如人的头,人的手或人的服饰,我们面临着一场技术挑战。当然,我们可以用最普通的复杂光滑曲面的造型方法,例如对NURBS的修剪(Trimming)来对付。确实,目前已经存在一些商用系统,诸如Alias-Wavefront和SoftImage等可以做到这一点,但是它们至少会遭遇到以下的困难:第一,修剪是昂贵的,而且有数值误差;第二,要在曲面的接缝处保持光滑,即使是近似的平滑也是困难的,因为模型是活动的。而细分曲面有潜力克服以上两个困难,它们无须修剪,没有缝,活动模型的平滑度被自动地保证。DeRose成功地应用了C-C的细分曲面造型法,同时发明了构造光滑的变半径的轮廓线及合成物的实际技术,提出了在服饰模型中碰撞检测的有效新算法,构造了关于细分曲面的光滑因子场方法。凭借这些数学和软件基础,他形象逼真地表现了Geri老头的头壳,手指和衣服,包括茄克衫,裤子,领带和鞋子。这些都是传统的NURBS连续曲面造型所不易做到的。那么,C-C细分曲面是怎样构造的呢?它与传统的Doo-Sabin细分曲面异曲同工,都是从一个称之为控制网格(网格多半可用激光从手工模型上输入)的多面体开始,递归地计算新网格上的每个顶点,这些顶点都是原网格上某几个顶点的加权平均。如果多面体的一个面有n条边,细分一次后,这个面就会变成n个四边形。随着细分的不断进行,控制网格就被逐渐磨光,其极限状态就是一张自由曲面。它是无缝的,因而是平滑的,即使模型是活动的。这种方法显著地压缩了设计和建立一个原始模型的时间。更重要的,允许原始模型局部地精制化。这就是它优于连续曲面造型方法之处. C-C细分是基于四边形的,而Loop曲面(1987年),蝶形曲面(1990年)是基于三角形的。它们都一样受到当今图形工作者的重用。
(3)计算机辅助设计与制造(CAD/CAM)。 这是一个最广泛,最活跃的应用领域。计算机辅助设计(Computer Aided Design,CAD)是利用计算机强有力的计算功能和高效率的图形处理能力,辅助知识劳动者进行工程和产品的设计与分析,以达到理想的目的或取得创新成果的一种技术。它是综合了计算机科学与工程设计方法的最新发展而形成的一门新兴学科。计算机辅助设计技术的发展是与计算机软件、硬件技术的发展和完善,与工程设计方法的革新紧密相关的。采用计算机辅助设计已是现代工程设计的迫切需要。CAD技术目前已广泛应用于国民经济的各个方面,其主要的应用领域有以下几个方面。
1.制造业中的应用
CAD技术已在制造业中广泛应用,其中以机床、汽车、飞机、船舶、航天器等制造业应用最为广泛、深入。众所周知,一个产品的设计过程要经过概念设计、详细设计、结构分析和优化、仿真模拟等几个主要阶段。

同时,现代设计技术将并行工程的概念引入到整个设计过程中,在设计阶段就对产品整个生命周期进行综合考虑。当前先进的CAD应用系统已经将设计、绘图、分析、仿真、加工等一系列功能集成于一个系统内。现在较常用的软件有UG II、I-DEAS、CATIA、PRO/E、Euclid等CAD应用系统,这些系统主要运行在图形工作站平台上。在PC平台上运行的CAD应用软件主要有Cimatron、Solidwork、MDT、SolidEdge等。由于各种因素,目前在二维CAD系统中Autodesk公司的AutoCAD占据了相当的市场。
2.工程设计中的应用
CAD技术在工程领域中的应用有以下几个方面:
(1)建筑设计,包括方案设计、三维造型、建筑渲染图设计、平面布景、建筑构造设计、小区规划、日照分析、室内装潢等各类CAD应用软件。
(2)结构设计,包括有限元分析、结构平面设计、框/排架结构计算和分析、高层结构分析、地基及基础设计、钢结构设计与加工等。
(3)设备设计,包括水、电、暖各种设备及管道设计。
(4)城市规划、城市交通设计,如城市道路、高架、轻轨、地铁等市政工程设计。
(5)市政管线设计,如自来水、污水排放、煤气、电力、暖气、通信(包括电话、有线电视、数据通信等)各类市政管道线路设计。
(6)交通工程设计,如公路、桥梁、铁路、航空、机场、港口、码头等。
(7)水利工程设计,如大坝、水渠、河海工程等。
(8)其他工程设计和管理,如房地产开发及物业管理、工程概预算、施工过程控制与管理、旅游景点设计与布置、智能大厦设计等。
3.电气和电子电路方面的应用
CAD技术最早曾用于电路原理图和布线图的设计工作。目前,CAD技术已扩展到印刷电路板的设计(布线及元器件布局),并在集成电路、大规模集成电路和超大规模集成电路的设计制造中大显身手,并由此大大推动了微电子技术和计算及技术的发展。
4.仿真模拟和动画制作
应用CAD技术可以真实地模拟机械零件的加工处理过程、飞机起降、船舶进出港口、物体受力破坏分析、飞行训练环境、作战方针系统、事故现场重现等现象。在文化娱乐界已大量利用计算机造型仿真出逼真的现实世界中没有的原始动物、外星人以及各种场景等,并将动画和实际背景以及演员的表演天衣无缝地合在一起,在电影制作技术上大放异彩,拍制出一个个激动人心的巨片。
5.其他应用
CAD技术除了在上述领域中的应用外,在轻工、纺织、家电、服装、制鞋、医疗和医药乃至体育方面都会用到CAD技术
CAD标准化体系进一步完善;系统智能化成为又一个技术热点;集成化成为CAD技术发展的一大趋势;科学计算可视化、虚拟设计、虚拟制造技术是20世纪90年代CAD技术发展的新趋向。
经过了一阶段计算机图形学的学习,对于图形学中基本图形的生成算法有了一定的了解。深度研究图形学,需要高深的数学知识,且每一个细化的方向需要的知识也不一样。图形学是计算机科学与技术学科的活跃前沿学科,被广泛的应用到生物学、物理学、化学、天文学、地球物理学、材料科学等领域。我深深感到这门学科涉及的领域之广是惊人的,可以说博大精深。

『拾』 计算机图形学发展前景怎么样,现在研究领域一般都分哪些

计算机图形学是随着计算机及其外围设备而产生和发展起来的,作为计算机科学与技术学科的一个独立分支已经历了近40年的发展历程。一方面,作为一个学科,计算机图形学在图形基础算法、图形软件与图形硬件三方面取得了长足的进步,成为当代几乎所有科学和工程技术领域用来加强信息理解和传递的技术和工具。另一方面,计算机图形学的硬件和软件本身已发展成为一个巨大的产业。
1.计算机图形学活跃理论及技术
(1)分形理论及应用
分形理论是当今世界十分活跃的新理论。作为前沿学科的分形理论认为,大自然是分形构成的。大千世界,对称、均衡的对象和状态是少数和暂时的,而不对称、不均衡的对象和状态才是多数和长期的,分形几何是描述大自然的几何学。作为人类探索复杂事物的新的认知方法,分形对于一切涉及组织结构和形态发生的领域,均有实际应用意义,并在石油勘探、地震预测、城市建设、癌症研究、经济分析等方面取得了不少突破性的进展。分形的概念是美籍数学家曼德布罗特(B.B.Mandelbrot)率先提出的。1967年他在美国《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。
??海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。它无法用常规的、传统的几何方法描述。我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是部局形态和整体形态的相似。在没有建筑物或其他东西作为参照物时,在空中拍摄的100公里长的海岸线与放大了的10公里长海岸线的两张照片,看上去十分相似。
??曾有人提出了这样一个显然是荒谬的命题:“英国的海岸线的长度是无穷大。”其论证思路是这样的:海岸线是破碎曲折的,我们测量时总是以一定的尺度去量得某个近似值,例如,每隔100米立一个标杆,这样,我们测得的是一个近似值,是沿着一条折线计算而得出的近似值,这条折线中的每一段是一条长为100米的直线线段。如果改为每10米立一个标杆,那么实际量出的是另一条折线的长度,它的每一个片段长10米。显然,后一次量出的长度将大于前一次量出的长度。如果我们不断缩小尺度,所量出的长度将会越来越大。这样一来,海岸线的长度不就成为无穷大了吗?
??为什么会出现这样的结论呢?曼德布罗特提出了一个重要的概念:分数维,又称分维。一般来说,维数都是整数,直线线段是一维的图形,正方形是二维的图形。在数学上,把欧氏空间的几何对象连续地拉伸、压缩、扭曲,维数也不变,这就是拓扑维数。然而,这种维数观并不能解决海岸线的长度问题。曼德布罗特是这样描述一个绳球的维数的:从很远的距离观察这个绳球,可看作一点(零维);从较近的距离观察,它充满了一个球形空间(三维);再近一些,就看到了绳子(一维);再向微观深入,绳子又变成了三维的柱,三维的柱又可分解成一维的纤维。那么,介于这些观察点之间的中间状态又如何呢?显然,并没有绳球从三维对象变成一维对象的确切界限。英国的海岸线为什么测不准?因为欧氏一维测度与海岸线的维数不一致。根据曼德布罗特的计算,英国海岸线的维数为1.26。有了分维的概念,海岸线的长度就可以确定了。
??1975年,曼德布罗特发现:具有自相似性的形态广泛存在于自然界中,如连绵的山川、飘浮的云朵、岩石的断裂口、布朗粒子运动的轨迹、树冠、花菜、大脑皮层……曼德布罗特把这些部分与整体以某种方式相似的形体称为分形(Fractal),这个单词由拉丁语Frangere衍生而成,该词本身具有“破碎”、“不规则”等含义。
??曼德布罗特的研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构。Mandelbrot集合图形的边界处,具有无限复杂和精细的结构。在此基础上,形成了研究分形性质及其应用的科学,称为分形理论(Fractal theory)或分形几何学(Fractal geometry)。
分形的特点和理论贡献
??数学上的分形有以下几个特点:
??(1)具有无限精细的结构;
??(2)比例自相似性;
??(3)一般它的分数维大于它的拓扑维数;
??(4)可以由非常简单的方法定义,并由递归、迭代产生等。
??(1)(2)两项说明分形在结构上的内在规律性。自相似性是分形的灵魂,它使得分形的任何一个片段都包含了整个分形的信息。第(3)项说明了分形的复杂性,第(4)项则说明了分形的生成机制。
??我们把传统几何的代表欧氏几何与以分形为研究对象的分形几何做一比较,可以得到这样的结论:欧氏几何是建立在公理之上的逻辑体系,其研究的是在旋转、平移、对称变换下各种不变的量,如角度、长度、面积、体积,其适用范围主要是人造的物体;而分形由递归、迭代生成,主要适用于自然界中形态复杂的物体,分形几何不再以分离的眼光看待分形中的点、线、面,而是把它们看成一个整体。
??我们可以从分形图案的特点去理解分形几何。分形图案有一系列有趣的特点,如自相似性、对某些变换的不变性、内部结构的无限性等。此外,分形图案往往和一定的几何变换相联系,在一些变化下,图案保持不变,从任意的初始状态出发,经过若干次的几何变换,图形将固定在这个特定的分形图案上,而不再发生变化。自相似原则和迭代生成原则是分形理论的重要原则。

??分形理论发展了维数的概念。在发现分数维以前,人们习惯于将点定义为零维,直线为一维,平面为二维,空间为三维,爱因斯坦在相对论中引入时间维,就形成四维时空。对某一问题给予多方面的考虑,可建立高维空间,但都是整数维。
??分形是20世纪涌现出的新的科学思想和对世界认识的新视角。从理论上讲,它是数学思想的新发展,是人类对于维数、点集等概念的理解的深化与推广。同时它又与现实的物理世界紧密相连,成为研究混沌(Chaos)现象的重要工具。众所周知,对混沌现象的研究正是现代理论物理学的前沿和热点之一。
??由于分形的研究,人们对于随机性和确定性的辩证关系有了进一步的理解。同样对于过程和状态的联系,对于宏观和微观的联系,对于层次之间的转化,对于无限性的丰富多采,也都产生了有益的影响。
??分形理论还是非线性科学的前沿和重要分支,作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识局部来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态和秩序;三是分形从特定层面揭示了世界普遍联系和统一的图景。
分形学的应用领域
??除了理论上的意义之外,在实际应用中,分形也显示了巨大的潜力,它已经在许多领域中得到有效的应用,其应用范围之广、效益之明显远远超过了十几年前的任何预测。目前大量分形方法的应用案例层出不穷。这些案例涉及的领域包括:生命过程进化,生态系统,数字编码和解码,数论,动力系统,理论物理(如流体力学和湍流) 等方面,此外,还有人利用分形学做城市规则和地震预报。
??分形技术在数据压缩中的应用是一个非常典型的例子。美国数学会会刊在1996年6月的刊物上发表了巴斯利的文章《利用分形进行图形压缩》,他把分形用于光盘制作的图形压缩中。一般来说,我们总是把一个图形作为像素的集合来加以存储和处理。一张最普通的图片也常常涉及几十万乃至上百万像素,从而占据大量的存储空间,传输速度也大大受到限制。巴斯利运用了分形中的一个重要思想:分形图案是与某种变换相联系的,我们可以把任何一个图形看作是某种变换反复迭代的产物。因此,存储一个图形,只需存储有关这些变换过程的信息,而无需存储图形的全部像素信息。只要找到这个变换过程,图形就可以准确地再现出来,而不必去存储大量的像素信息。使用这种方法,在实际的应用中,已经达到了压缩存储空间至原来1/8的效果。
??近年来,由分形理论发展起来的分形艺术(Fractal Art,FA),在表现形式和分形几何的理解等方面亦取得了突破性的进展。分形艺术是二维可视艺术,在许多方面类似于摄影。分形图像作品一般是通过计算机屏幕和打印机来展现的。分形艺术中的另一个重要部分便是分形音乐,分形音乐是由一个算法的多重迭代产生的。自相似是分形几何的本质,有人利用这一原理来建构一些带有自相似小段的合成音乐,主题在带有小调的三番五次的反复循环中重复,在节奏方面可以加上一些随机变化。我们常见的计算机屏幕保护程序,许多也是通过分形计算而得来的。
进入1990年代以来,人们开始越来越多地利用这一理论研究经济领域的一些问题,主要集中在对金融市场(如股票市场、外汇市场等)的研究。操纵者可以通过在若干时间点上的操纵使股价在微观尺度上发生所希望的变化;从时间的宏观尺度上来看,要使股价发生所希望的变化,就要求操纵者具有相当的经济实力。从分形的角度来看,股票价格具有分形特征。一方面,股价具有复杂的微观结构;另一方面,它具有对时间的标度不变性,即在不同的观测尺度下具有相似的结构,其结构是复杂和简单、不规则和有序的统一。对股价操纵者来说,要在单个时间点上影响股价并不难,即使是在大的时间尺度上影响股价也是有可能的,但是要想通过人为的操纵,在影响股价的同时,保持股价在时间的微观和宏观尺度上的一致性,在技术上就会显得非常困难。

(2) 曲面造型技术。它是计算机图形学和计算机辅助几何设计(Computer Aided Geometric Design)的一项重要内容,主要研究在计算机图象系统的环境下对曲面的表示、设计、显示和分析。它肇源于飞机、船舶的外形放样工艺,由Coons、Bezier等大师于六十年代奠定理论基础。经三十多年发展,现在它已经形成了以Bezier和B样条方法为代表的参数化特征设计和隐式代数曲面表示这两类方法为主体,以插值(Interpolation) 、拟合(Fitting) 、逼近(Approximation)这三种手段为骨架的几何理论体系。随着计算机图形显示对于真实性、实时性和交互性要求的日益增强,随着几何设计对象向着多样性、特殊性和拓扑结构复杂性靠拢的趋势的日益明显,随着图形工业和制造工业迈向一体化、集成化和网络化步伐的日益加快,随着激光测距扫描等三维数据采样技术和硬件设备的日益完善,曲面造型在近几年来得到了长足的发展。这主要表现在研究领域的急剧扩展和表示方法的开拓创新。
一.从研究领域来看,曲面造型技术已从传统的研究曲面表示、曲面求交和曲面拼接,扩充到曲面变形、曲面重建、曲面简化、曲面转换和曲面位差。
曲面变形(Deformation or Shape Blending): 传统的非均匀有理B样条(NURBS)曲面模型,仅允许调整控制顶点或权因子来局部改变曲面形状,至多利用层次细化模型在曲面特定点进行直接操作;一些简单的基于参数曲线的曲面设计方法,如扫掠法(Sweeping),蒙皮法(Skinning),旋转法和拉伸法,也仅允许调整生成曲线来改变曲面形状。计算机动画业和实体造型业迫切需要发展与曲面表示方式无关的变形方法或形状调配方法,于是产生了自由变形(FFD)法,基于弹性变形或热弹性力学等物理模型(原理)的变形法,基于求解约束的变形法,基于几何约束的变形法等曲面变形技术和基于多面体对应关系或基于图象形态学中Minkowski和操作的曲面形状调配技术。最近,笔者及其学生刘利刚首创活动局部球面坐标插值的新思想,给出了空间点集内在变量的完整数学描述,从几何内在解的角度,设计了三维多面体和自由曲面形状调配的一整套快速有效的算法,画面流畅,交互实时,对三维曲面变形的技术难题实现了突破。

曲面重建(Reconstruction):在精致的轿车车身设计或人脸-类雕塑曲面的动画制作中,常用油泥制模,再作三维型值点采样。在医学图象可视化中,也常用CT切片来得到人体脏器表面的三维数据点。从曲面上的部分采样信息来恢复原始曲面的几何模型,称为曲面重建。采样工具为:激光测距扫描器,医学成象仪,接触探测数字转换器,雷达或地震勘探仪器等。根据重建曲面的形式,它可分为函数型曲面重建和离散型曲面重建这两类。
曲面简化(Simplification):与曲面重建一样,这一研究领域目前也是国际热点之一。其基本思想在于从三维重建后的离散曲面或造型软件的输出结果(主要是三角网格)中去除冗余信息而又保证模型的准确度,以利于图形显示的实时性、数据存储的经济性和数据传输的快速性。对于多分辨率曲面模型而言,这一技术还有利于建立曲面的层次逼近模型,进行曲面的分层显示,分层传输和分层编辑。具体的曲面简化方法有:网格顶点剔除法,网格边界删除法,网格优化法,最大平面逼近多边形法以及参数化重新采样法。
曲面转换(Conversion):同一张曲面可以表为不同的数学形式,这一思想不仅具有理论意义,而且具有工业应用的现实意义。例如,NURBS这种参数有理多项式曲面虽然包括了参数多项式曲面的一切优点,但也存在着微分运算繁琐费时、积分运算无法控制误差的局限性。而在曲面拼接及物性计算中,这两种运算是不可避免的。这就提出了把一张NURBS曲面转化成近似的多项式曲面的问题。同样的要求更体现在NURBS曲面设计系统与多项式曲面设计系统之间的数据传递和无纸化生产的工艺过程中。再如,在两张参数曲面的求交运算中,如果把其中一张曲面的NURBS形式转化为隐式,就容易得到方程的数值解。近几年来,国际图形界对曲面转换的研究主要集中在以下几方面:NURBS曲面用多项式曲面来逼近的算法及收敛性;Bezier曲线曲面的隐式化及其反问题;CONSURF飞机设计系统的Ball曲线向高维的各种推广形式的比较及互化;有理Bezier曲线曲面的降阶逼近算法及误差估计;NURBS曲面在三角域上与矩形域上的互相快速转化等。
曲面位差(Offset):也称为曲面等距性,它在计算机图形及加工中有广泛应用,因而成为这几年的热门课题之一。例如,数控机床的刀具路径设计就要研究曲线的等距性。但从数学表达式容易看出,一般而言,一条平面参数曲线的等距曲线不再是有理曲线,这就越出了通用的NURBS系统的使用范围,造成了软件设计的复杂性和数值计算的不稳定。
二.从表示方法来看,以网格细分(Subdivision)为特征的离散造型与传统的连续造型相比,大有后来居上的创新之势。而且,这种曲面造型方法在生动逼真的特征动画和雕塑曲面的设计加工中如鱼得水,得到了高度的运用。
在1998年荣获奥斯卡大奖的电影作品中,有一个短片赫然在列,这就是美国著名的Pixar动画电影制片厂选送的作品"Geri's Game"。动画片描述了一个名叫Geri的老头,在公园里自己与自己下国际象棋,千方百计想取胜的诙谐故事。画面中人物和景色的造型细致生动,与故事情节浑然一体,使观众得到真正的美学享受。而这部动画片制作中的设计者,就是以上论文的作者,著名的计算机图形学家T.DeRose。DeRose在SIGGRAPH'98大会上报告的论文讲到了选用C-C细分曲面作为Geri老头特征造型模型的背景。他指出,NURBS尽管早已被国际标准组织ISO作为定义工业产品数据交换的STEP标准,在工业造型和动画制作中得到了广泛的应用,但仍然存在着局限性。单一的NURBS曲面,如其他参数曲面一样,限于表示在拓扑上等价于一张纸,一个圆柱面或一个圆环面的曲面,不能表示任意拓扑结构的曲面。为了表达特征动画中更复杂的形状,如人的头,人的手或人的服饰,我们面临着一场技术挑战。当然,我们可以用最普通的复杂光滑曲面的造型方法,例如对NURBS的修剪(Trimming)来对付。确实,目前已经存在一些商用系统,诸如Alias-Wavefront和SoftImage等可以做到这一点,但是它们至少会遭遇到以下的困难:第一,修剪是昂贵的,而且有数值误差;第二,要在曲面的接缝处保持光滑,即使是近似的平滑也是困难的,因为模型是活动的。而细分曲面有潜力克服以上两个困难,它们无须修剪,没有缝,活动模型的平滑度被自动地保证。DeRose成功地应用了C-C的细分曲面造型法,同时发明了构造光滑的变半径的轮廓线及合成物的实际技术,提出了在服饰模型中碰撞检测的有效新算法,构造了关于细分曲面的光滑因子场方法。凭借这些数学和软件基础,他形象逼真地表现了Geri老头的头壳,手指和衣服,包括茄克衫,裤子,领带和鞋子。这些都是传统的NURBS连续曲面造型所不易做到的。那么,C-C细分曲面是怎样构造的呢?它与传统的Doo-Sabin细分曲面异曲同工,都是从一个称之为控制网格(网格多半可用激光从手工模型上输入)的多面体开始,递归地计算新网格上的每个顶点,这些顶点都是原网格上某几个顶点的加权平均。如果多面体的一个面有n条边,细分一次后,这个面就会变成n个四边形。随着细分的不断进行,控制网格就被逐渐磨光,其极限状态就是一张自由曲面。它是无缝的,因而是平滑的,即使模型是活动的。这种方法显著地压缩了设计和建立一个原始模型的时间。更重要的,允许原始模型局部地精制化。这就是它优于连续曲面造型方法之处. C-C细分是基于四边形的,而Loop曲面(1987年),蝶形曲面(1990年)是基于三角形的。它们都一样受到当今图形工作者的重用。
(3)计算机辅助设计与制造(CAD/CAM)。 这是一个最广泛,最活跃的应用领域。计算机辅助设计(Computer Aided Design,CAD)是利用计算机强有力的计算功能和高效率的图形处理能力,辅助知识劳动者进行工程和产品的设计与分析,以达到理想的目的或取得创新成果的一种技术。它是综合了计算机科学与工程设计方法的最新发展而形成的一门新兴学科。计算机辅助设计技术的发展是与计算机软件、硬件技术的发展和完善,与工程设计方法的革新紧密相关的。采用计算机辅助设计已是现代工程设计的迫切需要。CAD技术目前已广泛应用于国民经济的各个方面,其主要的应用领域有以下几个方面。
1.制造业中的应用
CAD技术已在制造业中广泛应用,其中以机床、汽车、飞机、船舶、航天器等制造业应用最为广泛、深入。众所周知,一个产品的设计过程要经过概念设计、详细设计、结构分析和优化、仿真模拟等几个主要阶段。

同时,现代设计技术将并行工程的概念引入到整个设计过程中,在设计阶段就对产品整个生命周期进行综合考虑。当前先进的CAD应用系统已经将设计、绘图、分析、仿真、加工等一系列功能集成于一个系统内。现在较常用的软件有UG II、I-DEAS、CATIA、PRO/E、Euclid等CAD应用系统,这些系统主要运行在图形工作站平台上。在PC平台上运行的CAD应用软件主要有Cimatron、Solidwork、MDT、SolidEdge等。由于各种因素,目前在二维CAD系统中Autodesk公司的AutoCAD占据了相当的市场。
2.工程设计中的应用
CAD技术在工程领域中的应用有以下几个方面:
(1)建筑设计,包括方案设计、三维造型、建筑渲染图设计、平面布景、建筑构造设计、小区规划、日照分析、室内装潢等各类CAD应用软件。
(2)结构设计,包括有限元分析、结构平面设计、框/排架结构计算和分析、高层结构分析、地基及基础设计、钢结构设计与加工等。
(3)设备设计,包括水、电、暖各种设备及管道设计。
(4)城市规划、城市交通设计,如城市道路、高架、轻轨、地铁等市政工程设计。
(5)市政管线设计,如自来水、污水排放、煤气、电力、暖气、通信(包括电话、有线电视、数据通信等)各类市政管道线路设计。
(6)交通工程设计,如公路、桥梁、铁路、航空、机场、港口、码头等。
(7)水利工程设计,如大坝、水渠、河海工程等。
(8)其他工程设计和管理,如房地产开发及物业管理、工程概预算、施工过程控制与管理、旅游景点设计与布置、智能大厦设计等。
3.电气和电子电路方面的应用
CAD技术最早曾用于电路原理图和布线图的设计工作。目前,CAD技术已扩展到印刷电路板的设计(布线及元器件布局),并在集成电路、大规模集成电路和超大规模集成电路的设计制造中大显身手,并由此大大推动了微电子技术和计算及技术的发展。
4.仿真模拟和动画制作
应用CAD技术可以真实地模拟机械零件的加工处理过程、飞机起降、船舶进出港口、物体受力破坏分析、飞行训练环境、作战方针系统、事故现场重现等现象。在文化娱乐界已大量利用计算机造型仿真出逼真的现实世界中没有的原始动物、外星人以及各种场景等,并将动画和实际背景以及演员的表演天衣无缝地合在一起,在电影制作技术上大放异彩,拍制出一个个激动人心的巨片。
5.其他应用
CAD技术除了在上述领域中的应用外,在轻工、纺织、家电、服装、制鞋、医疗和医药乃至体育方面都会用到CAD技术
CAD标准化体系进一步完善;系统智能化成为又一个技术热点;集成化成为CAD技术发展的一大趋势;科学计算可视化、虚拟设计、虚拟制造技术是20世纪90年代CAD技术发展的新趋向。
经过了一阶段计算机图形学的学习,对于图形学中基本图形的生成算法有了一定的了解。深度研究图形学,需要高深的数学知识,且每一个细化的方向需要的知识也不一样。图形学是计算机科学与技术学科的活跃前沿学科,被广泛的应用到生物学、物理学、化学、天文学、地球物理学、材料科学等领域。我深深感到这门学科涉及的领域之广是惊人的,可以说博大精深。

热点内容
炒股为什么一直狠不下心来 发布:2025-06-18 03:01:36 浏览:415
美元基金如何投资境内股权回购 发布:2025-06-18 02:55:50 浏览:330
全家都炒股是什么意思 发布:2025-06-18 02:50:06 浏览:354
汉兴基金怎么赎回来 发布:2025-06-18 02:47:44 浏览:291
1年理财险1万十年可得多少钱 发布:2025-06-18 02:36:17 浏览:859
炒股挣钱吗有什么风险 发布:2025-06-18 02:31:52 浏览:801
炒股票账户如何登录另外手机 发布:2025-06-18 02:30:19 浏览:461
股票招商银行历史交易 发布:2025-06-18 02:19:27 浏览:213
一千多钱怎么炒股 发布:2025-06-18 01:58:22 浏览:568
货币基金利润如何 发布:2025-06-18 01:51:55 浏览:31