从量化面对股票市场进行论述分析
㈠ 量化投资到底是什么鬼,未来将颠覆中国股票市场
量化投资在一定程度上已经被别有用心地神话或者说标签化了,就像当下风头正劲的“互联网金融”一样,很多时候都被包装成了看似“高端大气”、且可能“一夜暴富”的卖点或者噱头。追根溯源,其实量化就是指运用数学或者统计模型来模拟金融市场的未来走向,从而预估金融产品的潜在收益。在前文中,我们还曾提到多个数字,如平均年收益率、年回报率、年盈利率,这些其实都表征同一个量化指标,即“年化收益率”。它是指投资者在一年的投资期限内所能获得收益比例,专门用于评估投资行为或金融产品的好坏优劣。 那么,究竟多高的年化收益率才能给投资者带来丰厚的投资回报?为了更加清楚的分析这个问题,我们不妨举个例子。
比如某位名叫“G”的投资者,在1990年时持有3.8万的启动资金,如果其所认购产品的平均年化收益率是60%,那么经过25年,到2015年,“G”将会拥有40亿,但如果其所购产品的平均年化收益率上涨15%(到75%),那么25年后,“G”的资产将会是40亿后再加个零,变成400个亿。百亿身价竟仅仅始于3.8万?这种堪比原子弹爆炸的财富增长若仅仅用“回报丰厚”来形容,会不会未免有些太吝啬了?我并不十分相信那些投行精英们会如此慷慨无私,让投资者只需在家坐着就能稳收百亿回报,所以如果今后有人向我推荐金融产品,而且宣称年化收益率可以有60%,我肯定得思量思量,自己是不是真的运气那么好,这辈子可以被钱砸晕?毕竟像文艺复兴公司的传奇也像“文艺复兴”一样,虽然能被历史铭记,但却难以被时代复制。
㈡ 什么是量化分析
量化分析就是分析数据化 混沌理论 :“相对论消除了关于绝对空间和时间的幻想;量子力学则消除了关于可控测量过程的牛顿式的梦;而混沌则消除了拉普拉斯关于决定论式可预测的幻想。” 一点就是未来无法确定。如果你某一天确定了,那是你撞上了。 第二事物的发展是通过自我相似的秩序来实现的。看见云彩,知道他是云彩,看见一座山,就知道是一座山,凭什么?就是自我相似。这是混沌理论两个基本的概念。 混沌理论还有一个是发展人格,他有三个原则,: 1、能量永远会遵循阻力最小的途径 2、始终存在着通常不可见的根本结构,这个结构决定阻力最小的途径。 3、这种始终存在而通常不可见的根本结构,不仅可以被发现,而且可以被改变。 一、混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。 二、混沌一词原指宇宙未形成之前的混乱状态,我国及古希腊哲学家对于宇宙之源起即持混沌论,主张宇宙是由混沌之初逐渐形成现今有条不紊的世界。在井然有序的宇宙中,西方自然科学家经过长期的探讨,逐一发现众多自然界中的规律,如大家耳熟能详的地心引力、杠杆原理、相对论等。这些自然规律都能用单一的数学公式加以描述,并可以依据此公式准确预测物体的行径。 三、近半世纪以来,科学家发现许多自然现象即使可化为单纯的数学公式,但是其行径却无法加以预测。如气象学家Edward Lorenz发现,简单的热对流现象居然能引起令人无法想象的气象变化,产生所谓的「蝴蝶效应」,亦即某地下大雪,经追根究底却发现是受到几个月前远在异地的蝴蝶拍打翅膀产生气流所造成的。一九六○年代,美国数学家Stephen Smale 发现,某些物体的行径经过某种规则性的变化之后,随后的发展并无一定的轨迹可寻,呈现失序的混沌状态。 四、混沌现象起因于物体不断以某种规则复制 前一阶段的运动状态,而产生无法预测的随机效果。所谓「差之毫厘,失之千里」正是此一现象的最佳批注。具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为单纯,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。但是此种混沌状态不同于一般杂乱无章的的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。如股票市场的起伏、人生的平坦曲折、教育的复杂过程。 五、混沌理论在教育行政、课程与教学、教育研究、教育测验等方面已经有些许应用的例子。由于教育的对象是人,人是随时变动起伏的个体,而教育的过程基本上依循一定的准则,并历经长期的互动,因此,相当符合混沌理论的架构。也因此,依据混沌理论,教育系统容易产生无法预期的结果。此一结果可能是正面的,也有可能是负面的。不论是正面或是负面的,重要的是,教育的成效或教育的研究除了短期的观察之外,更应该累积长期数据,从中分析出可能的脉络出来,以增加教育效果的可预测性,并运用其扩大教育效果。
㈢ 量化分析的量化投资策略
量化投资技术几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。
1·量化选股
量化选股就是采用数量的方法判断某个公司是否值得买入的行为。根据某个方法,如果该公司满足了该方法的条件,则放入股票池,如果不满足,则从股票池中剔除。量化选股的方法有很多种,总的来说,可以分为公司估值法、趋势法和资金法三大类
2·量化择时
股市的可预测性问题与有效市场假说密切相关。如果有效市场理论或有效市场假说成立,股票价格充分反映了所有相关的信息,价格变化服从随机游走,股票价格的预测则毫无意义。众多的研究发现我国股市的指数收益中,存在经典线性相关之外的非线性相关,从而拒绝了随机游走的假设,指出股价的波动不是完全随机的,它貌似随机、杂乱,但在其复杂表面的背后,却隐藏着确定性的机制,因此存在可预测成分。
3·股指期货套利
股指期货套利是指利用股指期货市场存在的不合理价格,同时参与股指期货与股票现货市场交易,或者同时进行不同期限,不同(但相近)类别股票指数合约交易,以赚取差价的行为,股指期货套利主要分为期现套利和跨期套利两种。股指期货套利的研究主要包括现货构建、套利定价、保证金管理、冲击成本、成分股调整等内容。
4·商品期货套利
商品期货套利盈利的逻辑原理是基于以下几个方面 :(1)相关商品在不同地点、不同时间对应都有一个合理的价格差价。(2)由于价格的波动性,价格差价经常出现不合理。(3)不合理必然要回到合理。(4)不合理回到合理的这部分价格区间就是盈利区间。
5·统计套利
有别于无风险套利,统计套利是利用证券价格的历史统计规律进行套利,是一种风险套利,其风险在于这种历史统计规律在未来一段时间内是否继续存在。统计套利在方法上可以分为两类,一类是利用股票的收益率序列建模,目标是在组合的β值等于零的前提下实现alpha 收益,我们称之为β中性策略;另一类是利用股票的价格序列的协整关系建模,我们称之为协整策略。
6·期权套利
期权套利交易是指同时买进卖出同一相关期货但不同敲定价格或不同到期月份的看涨或看跌期权合约,希望在日后对冲交易部位或履约时获利的交易。期权套利的交易策略和方式多种多样,是多种相关期权交易的组合,具体包括:水平套利、垂直套利、转换套利、反向转换套利、跨式套利、蝶式套利、飞鹰式套利等。
7·算法交易
算法交易又被称为自动交易、黑盒交易或者机器交易,它指的是通过使用计算机程序来发出交易指令。在交易中,程序可以决定的范围包括交易时间的选择、交易的价格、甚至可以包括最后需要成交的证券数量。根据各个算法交易中算法的主动程度不同,可以把不同算法交易分为被动型算法交易、主动型算法交易、综合型算法交易三大类。
8·资产配置
资产配置是指资产类别选择,投资组合中各类资产的适当配置以及对这些混合资产进行实时管理。量化投资管理将传统投资组合理论与量化分析技术的结合,极大地丰富了资产配置的内涵,形成了现代资产配置理论的基本框架。它突破了传统积极型投资和指数型投资的局限,将投资方法建立在对各种资产类股票公开数据的统计分析上,通过比较不同资产类的统计特征,建立数学模型,进而确定组合资产的配置目标和分配比例。
㈣ 如何量化的衡量股票市场一年的涨跌变化
通过统计不同时间段大盘的涨跌幅来做一些平均之类
㈤ 股票市场的大数据量化分析是怎么做的
会做的都不会和你说的,简单来说就是收集数据,实现大数据ai
㈥ 股票如何实现量化交易
采用交易接口介入,文化财经好像有!
㈦ 什么是量化交易,未来前景如何知道的讲讲。
国外量化交易已经发展了40年左右,量化交易程序换交易占比60%,量化基金规模达到30个亿美元,而国内量化交易起步较晚第一只量化基金在2004年左右,至今量化交易规模不过2万亿RMB,国内现在的量化人才也很缺失,随着过来一批量化交易的海龟回来从事量化交易会一定程度带动行业的发展,但是仍需一定时间,加上国内量化交易政策还不够明朗,整体来说量化交易在国内还是一年蓝海,但是路途并非坦途。
㈧ 如何理解量化选股和量化择时之间的关系
所谓量化投资,就是通过定量或统计的方法,不断地从历史数据中挖掘有效的规律并在投资行为中加以利用,甚至通过计算机程序自动执行下单的动作。也就是说,量化投资方法是靠“概率”取胜,其最鲜明的特征就是可定量化描述的模型、规律或策略。
对于股票市场,量化投资主要包括量化选股、量化择时、算法交易、股票组合配置、资金或仓位管理、风险控制等。我们这里重点聊一聊量化选股和择时策略,其中前者解决哪些股票值得关注或持有,后者解决何时买入或卖出这些股票,以期在可承受的风险程度下,获得尽可能多的收益。
第一阶段:选股
选股的目标是从市场上所有可交易的股票中,筛选出适合自己投资风格的、具有一定安全边际的股票候选集合,通常称为“股票池”,并可根据自己的操作周期或市场行情变化,不定时地调整该股票池,作为下一阶段择时或调仓的基础。
量化选股的依据可以是基本面,也可以是技术面,或二者的结合。常用的量化选股模型举例如下:
1多因子模型
多因子模型:采用一系列的“因子”作为选股标准,满足这些因子的股票将作为候选放入股票池,否则将被移出股票池。这些因子可以是一些基本面指标,如 PB、PE、EPS 增长率等,也可以是一些技术面指标,如动量、换手率、波动率等,或者是其它指标,如预期收益增长、分析师一致预期变化、宏观经济变量等。多因子模型相对来说比较稳定,因为在不同市场条件下,总有一些因子会发生作用。
2板块轮动模型
板块轮动模型:一种被称作风格轮动,它是根据市场风格特征进行投资,比如有时市场偏好中小盘股,有时偏好大盘股,如果在风格转换的初期介入,则可以获得较大的超额收益;另一种被称作行业轮动,即由于经济周期的原因,总有一些行业先启动行情,另有一些(比如处于产业链上下游的)行业会跟随。在经济周期过程中,依次对这些轮动的行业进行配置,比单纯的买入持有策略有更好的效果。
3一致性预期模型
一致性预期模型:指市场上的投资者可能会对某些信息产生一致的看法,比如大多数分析师看好某一只股票,可能这个股票在未来一段时间会上涨;如果大多数分析师看空某一只股票,可能这个股票在未来一段时间会下跌。一致性预期策略就是利用大多数分析师的看法来进行股票的买入卖出操作。
与此类似的思路还有基于股吧、论坛、新闻媒体等对特定股票提及的舆情热度或偏正面/负面的消息等作为依据。还有一种思路是反向操作,回避羊群效应(物极必反),避免在市场狂热时落入主力资金出货的陷阱。
4资金流模型
资金流模型:其基本思想是根据主力资金的流向来判断股票的涨跌,如果资金持续流入,则股票应该会上涨,如果资金持续流出,则股票应该下跌。所以可将资金流入流出情况编制成指标,利用该指标来预测未来一段时间内股票的涨跌情况,作为选股依据。
第二阶段:择时
择时的目标是确定股票的具体买卖时机,其依据主要是技术面。取决于投资周期或风格(例如中长线、短线,或超短线),择时策略可以从比较粗略的对股票价位相对高低位置的判断,到依据更精确的技术指标或事件消息等作为信号来触发交易动作。
一般来说,择时动作的产生可以基于日K线(或周K线),也可以基于日内的小时或分钟级别K线,甚至tick级的分时图等。具体的量化择时策略可以分为如下几种:
1趋势跟踪型
趋势跟踪型策略适用于单边上升或单边下降(如果可做空的话)的行情——当大盘或个股出现一定程度的上涨和一定程度的下跌,则认为价格走势会进一步上涨或下跌而做出相应操作(买入->持有->加仓->继续持有->卖出)。
2高抛低吸型
高抛低吸型:高抛低吸型策略适用于震荡行情——当价格走势在一定范围的交易区间(箱形整理)或价格通道(平行上升或下降通道)的上下轨之间波动时,反复地在下轨附近买入,在上轨附近卖出,赚取波段差价利润(下轨买入->上轨卖出->下轨买入->上轨卖出->…)。
3横盘突破型
横盘突破型:价格走势可能在一定区间范围内长时间震荡,总有一天或某一时刻走出该区间,或者向上突破价格上轨(如吸筹阶段结束开始拉升),或者向下突破价格下轨(如主力出货完毕,或向下一目标价位跌落以寻找有效支撑),此时行情走势变得明朗。
横盘突破型策略就是要抓住这一突破时机果断开多或开空,以期用最有利价位和最小风险入场,获得后续利润(空仓或持仓等待机会->突破上轨则买入或平空/突破下轨则卖出或做空)。
常见的趋势跟踪型策略有:短时和长时移动均线交叉策略,均线多头排列和空头排列入场出场策略,MACD的DIFF和DEA线交叉策略等。如下图所示:
常见的高抛低吸型策略一般通过震荡类技术指标,如KDJ、RSI、CCI等,来判断价格走势的超卖或超卖状态,或通过MACD红绿柱或量能指标与价格走势间的背离现象,来预测波动区间拐点的出现。如下图所示:
常见的横盘突破策略包括布林带上下轨突破、高低价通道突破、Hans-123、四周法则等。如下图所示:
必须要强调的是,趋势跟踪型策略和高抛低吸型策略适用于完全不同的市场行情阶段——如果在单边趋势中做高抛低吸,或是在震荡行情中做趋势跟踪,则可能会造成很大亏损。因此,对这二者的使用,最关键的是,第一要尽量准确地判断当前行情类型,第二是要时刻做好止损保护(和及时止盈)。
总结一下:
在疯牛秘籍和疯牛形态系列产品中,提供了大量对股市规律的揭示、以及基于这些规律制定的量化策略,例如基于各类公告事件、资金动向、技术指标等制定的策略和规律,以及次日机会、底部形态反转等对应的交易时机。
这些实时动态的策略可为投资者的选股和择时操作提供高效的、有价值的参考。
㈨ 股票市场中什么 是量化投资!
微量网:量化投资在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。
量化投资区别于定性投资的鲜明特征就是模型,对于量化投资中模型与人的关系,大家也比较关心。我打个比方来说明这种关系,我们先看一看医生治病,中医与西医的诊疗方法不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,定性程度上大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。
医生治疗病人的疾病,投资者治疗市场的疾病,市场的疾病是什么?就是错误定价和估值,没病或病得比较轻,市场是有效或弱有效的;病得越严重,市场越无效。投资者用资金投资于低估的证券,直到把它的价格抬升到合理的价格水平上。
但是,定性投资和定量投资的具体做法有些差异,这些差异如同中医和西医的差异,定性投资更像中医,更多地依靠经验和感觉判断病在哪里;定量投资更像是西医,依靠模型判断,模型对于定量投资基金经理的作用就像CT机对于医生的作用。在每一天的投资运作之前,我会先用模型对整个市场进行一次全面的检查和扫描,然后根据检查和扫描结果做出投资决策。
量化投资技术几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。