股票股利股价模型
① 计算股票价值的模型有哪些
计算股票价值的模型有:
1、DDM模型(Dividend discount model /股利折现模型)
2、DCF /Discount Cash Flow /折现现金流模型)
3、FCFE ( Free cash flow for the equity equity /股权自由现金流模型)模型
4、FCFF模型( Free cash flow for the firm firm /公司自由现金流模型)。
股票模型:
股票模型就是对于现实中的个股,为了达到盈利目的,作出一些必要的简化和假设,运用适当的数学分析,得到一个数学结构。
在这里引用数学模型的定义,也可以说,股票建模是利用数学语言(符号、式子与图象)模拟现实的模型。把现实模型抽象、简化为某种数学结构是数学模型的基本特征。它或者能解释特定现象的现实状态,或者能预测到对象的未来状况,或者能提供处理对象的最优决策或控制。
② 什么是股利折现模型
股息贴现模型是股票估值的一种模型,是收入资本化法运用于普通股价值分析中的模型。以适当的贴现率将股票未来预计将派发的股息折算为现值,以评估股票的价值。DDM与将未来利息和本金的偿还折算为现值的债券估值模型相似。
股票价格是市场供求关系的结果,不一定反映该股票的真正价值,而股票的价值应该在股份公司持续经营中体现。因此,公司股票的价值是由公司逐年发放的股利所决定的。而股利多少与公司的经营业绩有关。股票的内在价值是由公司的业绩决定的。通过研究一家公司的内在价值而指导投资决策,这就是股利贴现模型的现实意义了。
(2)股票股利股价模型扩展阅读
原理:
内在价值是指股票本身应该具有的价值,而不是它的市场价格。股票内在价值可以用股票每年股利收入的现值之和来评价;股利是发行股票的股份公司给予股东的回报,按股东的持股比例进行利润分配,每一股股票所分得的利润就是每股股票的股利。
这种评价方法的根据是,如果你永远持有这个股票(比如你是这个公司的老板,自然要始终持有公司的股票),那么你逐年从公司获得的股利的贴现值就是这个股票的价值。根据这个思想来评价股票的方法称为股利贴现模型。
③ 股利贴现模型怎么对股票进行估值
有现金红利贴现模型进行股票估值,这个涉嫌到很多的影响因素,因为哪一个因素变了,都会影响到最终的估值结果。最重要的三个因素现金红利,期望回报率,可持续增长速度。最终得到一个估值的结果,这有相应的公式。
可持续增长速度计,这个计算公式是留存收益比例乘以净资产收益率及roe,你从上市公司公布的各项财务指标里面可以计算到净资产收益率,这个你可以通过新浪财经或者通过东方财富等金融网站得到他已经计算好了净资产收益率,留存收益比例公司一般都会公布的,也就是他的一减去现金分红的比例,剩下的呢叫留存收益比例,两者相乘就得到可持续增长速度,然后最终的公式就是贴现的价格等于D0×(1+G)÷(K-G)。
④ 股票价值评估的模型有哪些分别适用于哪些情况,在实际操作中需要注意什么问题
股票价值评估分以下几种模型:
1.DDM模型(Dividend discount model /股利折现模型)
2.DCF /Discount Cash Flow /折现现金流模型)
(1)FCFE ( Free cash flow for the equity equity /股权自由现金流模型)模型
(2)FCFF模型( Free cash flow for the firm firm /公司自由现金流模型)
DDM模型
V代表普通股的内在价值, Dt为普通股第t期支付的股息或红利,r为贴现率
对股息增长率的不同假定,股息贴现模型可以分为
:零增长模型、不变增长模型(高顿增长模型)、二阶段股利增长模型(H模型)、三阶段股利增长模型和多元增长模型等形式。
最为基础的模型;红利折现是内在价值最严格的定义; DCF法大量借鉴了DDM的一些逻辑和计算方法(基于同样的假设/相同的限制)。
1. DDM DDM模型模型法(Dividend discount model / Dividend discount model / 股利折现模型股利折现模型)
DDM模型
2. DDM DDM模型的适用分红多且稳定的公司,非周期性行业;
3. DDM DDM模型的不适用分红很少或者不稳定公司,周期性行业;
DDM模型在大陆基本不适用;
大陆股市的行业结构及上市公司资金饥渴决定,分红比例不高,分红的比例与数量不具有稳定性,难以对股利增长率做出预测。
DCF 模型
2.DCF /Discount Cash Flow /折现现金流模型) DCF估值法为最严谨的对企业和股票估值的方法,原则上该模型适用于任何类型的公司。
自由现金流替代股利,更科学、不易受人为影响。
当全部股权自由现金流用于股息支付时, FCFE模型与DDM模型并无区别;但总体而言,股息不等同于股权自由现金流,时高时低,原因有四:
稳定性要求(不确定未来是否有能力支付高股息);
未来投资的需要(预计未来资本支出/融资的不便与昂贵);
税收因素(累进制的个人所得税较高时);
信号特征(股息上升/前景看好;股息下降/前景看淡)
DCF模型的优缺点
优点:比其他常用的建议评价模型涵盖更完整的评价模型,框架最严谨但相对较复杂的评价模型。需要的信息量更多,角度更全面, 考虑公司发展的长期性。较为详细,预测时间较长,而且考虑较多的变数,如获利成长、资金成本等,能够提供适当思考的模型。
缺点:需要耗费较长的时间,须对公司的营运情形与产业特性有深入的了解。考量公司的未来获利、成长与风险的完整评价模型,但是其数据估算具有高度的主观性与不确定性。复杂的模型,可能因数据估算不易而无法采用,即使勉强进行估算,错误的数据套入完美的模型中,也无法得到正确的结果。小变化在输入上可能导致大变化在公司的价值上。该模型的准确性受输入值的影响很大(可作敏感性分析补救)。
⑤ 股利定价模型计算该股票的内在价值
0.5*(1+8%)/(8%-X),X是股利的增长率,固定股利X=0,结果为6.75,该股低估。
⑥ 股利固定增长的股票估价模型
可以用两种解释来解答你的问题:第一种是结合实际的情况来解释,在解释过程中只针对最后的结论所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)来进行讨论,但理论依据上会有点牵强;第二种是从式子的推导过程来进行相关的论述,结合相关数学理论来解释,最后解释的结果表明g>R时,P0取值应为正无穷且结果推导。
第一种解释如下:
这个数学推导模型中若出现g>=R的情况在现实中基本不会出现的。要理解这两个数值在式子中成立时必有g<R恒久关系要结合现实进行理解。
若股利以一个固定的比率增长g,市场要求的收益率是R,当R大于g且相当接近于g的时候,也就是数学理论上的极值为接近于g的数值,那么上述的式子所计算出来的数值会为正无穷,这样的情况不会在现实出现的,由于R这一个是市场的预期收益率,当g每年能取得这样的股息时,R由于上述的式子的关系导致现实中R不能太接近于g,所以导致市场的预期收益率R大于g时且也不会太接近g才切合实际。
根据上述的分析就不难理解g>=R在上述式子中是不成立的,由于g=R是一个式子中有意义与无意义的数学临界点。
第二种解释如下:
从基本式子进行推导的过程为:
P0=D1/(1+R)+ D2/(1+R)^2+D3/(1+R)^3 + ……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
这一步实际上是提取公因式,应该不难理解,现在你也可以用g>=R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现(1+g)/(1+R)>=1,这样就会导致整个式子计算出来的数值会出现一个正无穷;用g<R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现0<(1+g)/(1+R)<1,这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](注:N依题意是正无穷的整数)
这一步实际上是上一步的一个数学简化,现在的关键是要注意式子的后半部分。若g=R,则(1+g)/(1+R)=1,导致1-(1+g)/(1+R)这个式子即分母为零,即无意义,从上一步来看,原式的最终值并不是无意义的,故此到这一步为止g=R不适合这式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把这个结果代入原式中还是正无穷;g<R这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
这一步是十分关键的一步,是这样推导出来的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其极值为零,即1-(1+g)^N/(1+R)^N极值为1,即上一步中的分子1-(1+g)^N/(1+R)^N为1;若g>R是无法推导这一步出来的,原因是(1+g)/(1+R)>1,导致(1+g)^N/(1+R)^N仍然是正无穷,即1-(1+g)^N/(1+R)^N极值为负无穷,导致这个式子无法化简到这一步来,此外虽然无法简化到这一步,但上一步中的式子的后半部分,当g>R时,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]这一个式子为正无穷,注意这个式子中的分子部分为负无穷,分母部分也为负值,导致这个式子仍为正无穷。
P0=D0(1+g)/(R-g)=D1/(R-g)
(注:从上一步到这里为止只是一个数学上的一个简单简化过程,这里不作讨论)
经过上述的分析你就会明白为什么书中会说只要增长率g<R,这一系列现金流现值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增长率g>R时,原式所计算出来的数值并不会为负,只会取值是一个正无穷,且g=R时,原式所计算出来的数值也是一个正无穷。
⑦ 股利折现模型和股利增长模型有啥区别
第一
股利折现模型:
普通股成本=第一年预期股利/普通股金额×(1-普通股筹资费率)×100%+股利固定增长率
第二
股利增长模型:
假设如果股利以一个固定的比率增长,那么我们就已经把预测无限期未来股利的问题,转化为单一增长率的问题。如果D0是刚刚派发的股利,g是稳定增长率,那么股价可以写成:
P0=D1/(1+R)+ D2/(1+R)^2 + D3/(1+R)^3 + ……
=D0(1+g)/(1+R) + D0(1+ g)^2/(1+R)^2 + D0(1+ g)^3/(1+R)^3……
⑧ 如何理解股利贴现模型以及其计算公式
股利贴现模型,简称DDM,是一种最基本的股票内在价值评价模型,股票内在价值可以用股票每年股利收入的现值之和来评价;股利是发行股票的股份公司给予股东的回报,按股东的持股比例进行利润分配,每一股股票所分得的利润就是每股股票的股利。
股利贴现模型为定量分析虚拟资本、资产和公司价值奠定了理论基础,也为证券投资的基本分析提供了强有力的理论根据。
股利贴现模型计算公式分为三种。零增长模型即股利增长率为0,计算公式V=D0/k,V为公司价值,D0为当期股利,K为投资者要求的投资回报率,或资本成本;不变增长模型,即股利按照固定的增长率g增长,计算公式为V=D1/(k-g);二段增长模型、三段增长模型、及多段增长模型。
(8)股票股利股价模型扩展阅读:
股利是股东投资股票获得的唯一现金流,因此现金股利是决定股票价值的主要因素,而盈利等其他因素对股票价值的影响,只能通过股利间接地表现出来。现金股利贴现模型适合于分红多且稳定的公司,一般为非周期性行业。
由于该模型使用的是预期现金股利的贴现价值,因此对于分红很少或者股利不稳定的公司、周期性行业均不适用。股利贴现模型在实际应用中存在的问题有许多公司不支付现金股利,股利贴现模型的应用受到限制;股利支付受公司股利政策的人为因素影响较大;相对于公司收益长期明显滞后。
⑨ 求:利用股票估价模型,计算A、B公司股票价值
股票估价与债券估价具有不同的特点。
债券有确定的未来收入现金流。这些现金流包括: 票
息收入和本金收入。无论票息收入还是本金都有确定发生
的时间和大小。因此债券的估价可以完全遵循折现现金流
法。
一般来讲, 股票收入也包括两部分: 股利收入和出售
时的售价。因此, 理论上股票估价也可以采用折现现金流
法, 即求一系列的股利和将来出售股票时售价的现值。
但是, 股利和将来出售股票时的售价都是不确定的,
也是很难估计的。因此, 股票估价很难用折现现金流法来
完成。事实上, 目前理论上还没有一个准确估计股票价值
的模型问世。
不过, 在对股利做出一些假设的前提下, 我们仍然可
以遵循折现现金流法的思想去尝试股票价值的估计。
本文在MATLAB 编程环境中建立了股票估价的两阶段和三阶段模型, 并用具体的实例验证了模型的正
确性和广泛适应性; 最后, 使用两阶段模型进行了股票价值对初始股利、所要求的最低回报率、高速增长期以及股利
增长率的敏感性分析, 得出了股票价值对最低回报率和股利增长率最为敏感的结论。这些分析对投资决策具有一定
的参考价值。
具体模型参考:www.xxpie.cn
⑩ 股票估值 DDM是什么模型
DDM模型(dividend
discount
model),为股利贴现模型。
是计算公司价值的一种方法,是一种绝对估值方法。
根据股利发放的不同,DDM具体可以分为以下几种:
1,零增长模型(即股利增长率为0,未来各期股利按固定数额发放)
计算公式为V=D0/k
其中V为公司价值,D0为当期股利,K为投资者要求的投资回报率,或资本成本。
2,不变增长模型(即股利按照固定的增长率g增长)
计算公式为V=D1/(k-g)
注意此处的D1为下一期的股利,而非当期股利
3,二段增长模型、三段增长模型、多段增长模型
二段增长模型假设在时间l内红利按照g1增长率增长,l外按照g2增长。
三段增长模型也是类似,不过多假设一个时间点l2,增加一个增长率g3。