当前位置:首页 » 市值市价 » 聚类分析在股票市场中的应用

聚类分析在股票市场中的应用

发布时间: 2022-03-09 02:58:09

『壹』 聚类分析的应用领域有哪些

聚类在以下几个领域中是非常有用的:模式分析的浏览、聚集、决策制定及机器学习,还包括数据挖掘、文件恢复、图像分割及模式分类。但在这些问题中,几乎没有有关数据的先验信息(如统计模型)可用,而用户又要求尽可能地对数据的可能性少进行假设。在这些限制条件下,聚类方法特别适合于查看数据点中的内在关系以对它们的结构进行评估。

『贰』 关于聚类分析

1。聚类分析的特点
聚类分析(cluster analysis)是根据事物本身的特性研究个体的一种方法,目的在于将相似的事物归类。它的原则是同一类中的个体有较大的相似性,不同类的个体差异性很大。这种方法有三个特征:适用于没有先验知识的分类。如果没有这些事先的经验或一些国际、国内、行业标准,分类便会显得随意和主观。这时只要设定比较完善的分类变量,就可以通过聚类分析法得到较为科学合理的类别;可以处理多个变量决定的分类。例如,要根据消费者购买量的大小进行分类比较容易,但如果在进行数据挖掘时,要求根据消费者的购买量、家庭收入、家庭支出、年龄等多个指标进行分类通常比较复杂,而聚类分析法可以解决这类问题;聚类分析法是一种探索性分析方法,能够分析事物的内在特点和规律,并根据相似性原则对事物进行分组,是数据挖掘中常用的一种技术。
这种较成熟的统计学方法如果在市场分析中得到恰当的应用,必将改善市场营销的效果,为企业决策提供有益的参考。其应用的步骤为:将市场分析中的问题转化为聚类分析可以解决的问题,利用相关软件(如SPSS、SAS等)求得结果,由专家解读结果,并转换为实际操作措施,从而提高企业利润,降低企业成本。
2.应用范围
聚类分析在客户细分中的应用

消费同一种类的商品或服务时,不同的客户有不同的消费特点,通过研究这些特点,企业可以制定出不同的营销组合,从而获取最大的消费者剩余,这就是客户细分的主要目的。常用的客户分类方法主要有三类:经验描述法,由决策者根据经验对客户进行类别划分;传统统计法,根据客户属性特征的简单统计来划分客户类别;非传统统计方法,即基于人工智能技术的非数值方法。聚类分析法兼有后两类方法的特点,能够有效完成客户细分的过程。
例如,客户的购买动机一般由需要、认知、学习等内因和文化、社会、家庭、小群体、参考群体等外因共同决定。要按购买动机的不同来划分客户时,可以把前述因素作为分析变量,并将所有目标客户每一个分析变量的指标值量化出来,再运用聚类分析法进行分类。在指标值量化时如果遇到一些定性的指标值,可以用一些定性数据定量化的方法加以转化,如模糊评价法等。除此之外,可以将客户满意度水平和重复购买机会大小作为属性进行分类;还可以在区分客户之间差异性的问题上纳入一套新的分类法,将客户的差异性变量划分为五类:产品利益、客户之间的相互作用力、选择障碍、议价能力和收益率,依据这些分析变量聚类得到的归类,可以为企业制定营销决策提供有益参考。
以上分析的共同点在于都是依据多个变量进行分类,这正好符合聚类分析法解决问题的特点;不同点在于从不同的角度寻求分析变量,为某一方面的决策提供参考,这正是聚类分析法在客户细分问题中运用范围广的体现。

聚类分析在实验市场选择中的应用

实验调查法是市场调查中一种有效的一手资料收集方法,主要用于市场销售实验,即所谓的市场测试。通过小规模的实验性改变,以观察客户对产品或服务的反应,从而分析该改变是否值得在大范围内推广。
实验调查法最常用的领域有:市场饱和度测试。市场饱和度反映市场的潜在购买力,是市场营销战略和策略决策的重要参考指标。企业通常通过将消费者购买产品或服务的各种决定因素(如价格等)降到最低限度的方法来测试市场饱和度。或者在出现滞销时,企业投放类似的新产品或服务到特定的市场,以测试市场是否真正达到饱和,是否具有潜在的购买力。前述两种措施由于利益和风险的原因,不可能在企业覆盖的所有市场中实施,只能选择合适的实验市场和对照市场加以测试,得到近似的市场饱和度;产品的价格实验。这种实验往往将新定价的产品投放市场,对顾客的态度和反应进行测试,了解顾客对这种价格的是否接受或接受程度;新产品上市实验。波士顿矩阵研究的企业产品生命周期图表明,企业为了生存和发展往往要不断开发新产品,并使之向明星产品和金牛产品顺利过渡。然而新产品投放市场后的失败率却很高,大致为66%到90%。因而为了降低新产品的失败率,在产品大规模上市前,运用实验调查法对新产品的各方面(外观设计、性能、广告和推广营销组合等)进行实验是非常有必要的。
在实验调查方法中,最常用的是前后单组对比实验、对照组对比实验和前后对照组对比实验。这些方法要求科学的选择实验和非实验单位,即随机选择出的实验单位和非实验单位之间必须具备一定的可比性,两类单位的主客观条件应基本相同。
通过聚类分析,可将待选的实验市场(商场、居民区、城市等)分成同质的几类小组,在同一组内选择实验单位和非实验单位,这样便保证了这两个单位之间具有了一定的可比性。聚类时,商店的规模、类型、设备状况、所处的地段、管理水平等就是聚类的分析变量。 转

『叁』 聚类分析的主要应用

聚类分析被用来发现不同的客户群,并且通过购买模式刻画不同的客户群的特征。
聚类分析是细分市场的有效工具,同时也可用于研究消费者行为,寻找新的潜在市场、选择实验的市场,并作为多元分析的预处理。 聚类分析在电子商务中网站建设数据挖掘中也是很重要的一个方面,通过分组聚类出具有相似浏览行为的客户,并分析客户的共同特征,可以更好的帮助电子商务的用户了解自己的客户,向客户提供更合适的服务。

『肆』 聚类分析方法具体有哪些应用可不可以举个例子

比如说现在要把n个产品按产品的m个指标继续聚类,因为产品可能之前的特色是不一样的。而这个时候影响产品的因素有m个,不可能一个一个的考虑,那样是分不出类来的。所以只能对产品的m个指标综合考虑,采用SPSS中的样本聚类方法,就可以直接将产品分好类。并且从分析结果还可以看出各类产品的特色分别是什么。。就是最主要的分类标准是什么。
聚类分析不仅可以用于样本聚类,还可以用于变量聚类,就是对m个指标进行聚类。因为有时指标太多,不能全部考虑,需要提取出主要因素,而往往指标之间又有很多相关联的地方,所以可以先对变量聚类,然后从每一类中选取出一个代表型的指标。这样就大大减少了指标,并且没有造成巨大的信息丢失。

『伍』 如何用MATLAB对股票数据做聚类分析

直接调kmeans函数。
k = 3;%类别数
idx = kmeans(X, k);%idx就是每个样本点的标号。

『陆』 聚类分析方法应用于哪些问题的研究

1.聚类分析的特点
聚类分析(cluster analysis)是根据事物本身的特性研究个体的一种方法,目的在于将相似的事物归类.它的原则是同一类中的个体有较大的相似性,不同类的个体差异性很大.这种方法有三个特征:适用于没有先验知识的分类.如果没有这些事先的经验或一些国际、国内、行业标准,分类便会显得随意和主观.这时只要设定比较完善的分类变量,就可以通过聚类分析法得到较为科学合理的类别;可以处理多个变量决定的分类.例如,要根据消费者购买量的大小进行分类比较容易,但如果在进行数据挖掘时,要求根据消费者的购买量、家庭收入、家庭支出、年龄等多个指标进行分类通常比较复杂,而聚类分析法可以解决这类问题;聚类分析法是一种探索性分析方法,能够分析事物的内在特点和规律,并根据相似性原则对事物进行分组,是数据挖掘中常用的一种技术.
这种较成熟的统计学方法如果在市场分析中得到恰当的应用,必将改善市场营销的效果,为企业决策提供有益的参考.其应用的步骤为:将市场分析中的问题转化为聚类分析可以解决的问题,利用相关软件(如SPSS、SAS等)求得结果,由专家解读结果,并转换为实际操作措施,从而提高企业利润,降低企业成本.
2.应用范围
聚类分析在客户细分中的应用

消费同一种类的商品或服务时,不同的客户有不同的消费特点,通过研究这些特点,企业可以制定出不同的营销组合,从而获取最大的消费者剩余,这就是客户细分的主要目的.常用的客户分类方法主要有三类:经验描述法,由决策者根据经验对客户进行类别划分;传统统计法,根据客户属性特征的简单统计来划分客户类别;非传统统计方法,即基于人工智能技术的非数值方法.聚类分析法兼有后两类方法的特点,能够有效完成客户细分的过程.
例如,客户的购买动机一般由需要、认知、学习等内因和文化、社会、家庭、小群体、参考群体等外因共同决定.要按购买动机的不同来划分客户时,可以把前述因素作为分析变量,并将所有目标客户每一个分析变量的指标值量化出来,再运用聚类分析法进行分类.在指标值量化时如果遇到一些定性的指标值,可以用一些定性数据定量化的方法加以转化,如模糊评价法等.除此之外,可以将客户满意度水平和重复购买机会大小作为属性进行分类;还可以在区分客户之间差异性的问题上纳入一套新的分类法,将客户的差异性变量划分为五类:产品利益、客户之间的相互作用力、选择障碍、议价能力和收益率,依据这些分析变量聚类得到的归类,可以为企业制定营销决策提供有益参考.
以上分析的共同点在于都是依据多个变量进行分类,这正好符合聚类分析法解决问题的特点;不同点在于从不同的角度寻求分析变量,为某一方面的决策提供参考,这正是聚类分析法在客户细分问题中运用范围广的体现.

聚类分析在实验市场选择中的应用

实验调查法是市场调查中一种有效的一手资料收集方法,主要用于市场销售实验,即所谓的市场测试.通过小规模的实验性改变,以观察客户对产品或服务的反应,从而分析该改变是否值得在大范围内推广.
实验调查法最常用的领域有:市场饱和度测试.市场饱和度反映市场的潜在购买力,是市场营销战略和策略决策的重要参考指标.企业通常通过将消费者购买产品或服务的各种决定因素(如价格等)降到最低限度的方法来测试市场饱和度.或者在出现滞销时,企业投放类似的新产品或服务到特定的市场,以测试市场是否真正达到饱和,是否具有潜在的购买力.前述两种措施由于利益和风险的原因,不可能在企业覆盖的所有市场中实施,只能选择合适的实验市场和对照市场加以测试,得到近似的市场饱和度;产品的价格实验.这种实验往往将新定价的产品投放市场,对顾客的态度和反应进行测试,了解顾客对这种价格的是否接受或接受程度;新产品上市实验.波士顿矩阵研究的企业产品生命周期图表明,企业为了生存和发展往往要不断开发新产品,并使之向明星产品和金牛产品顺利过渡.然而新产品投放市场后的失败率却很高,大致为66%到90%.因而为了降低新产品的失败率,在产品大规模上市前,运用实验调查法对新产品的各方面(外观设计、性能、广告和推广营销组合等)进行实验是非常有必要的.
在实验调查方法中,最常用的是前后单组对比实验、对照组对比实验和前后对照组对比实验.这些方法要求科学的选择实验和非实验单位,即随机选择出的实验单位和非实验单位之间必须具备一定的可比性,两类单位的主客观条件应基本相同.
通过聚类分析,可将待选的实验市场(商场、居民区、城市等)分成同质的几类小组,在同一组内选择实验单位和非实验单位,这样便保证了这两个单位之间具有了一定的可比性.聚类时,商店的规模、类型、设备状况、所处的地段、管理水平等就是聚类的分析变量

『柒』 主成分分析和聚类分析应用在哪些领域

主成分分析法在过程中产生新变量,而聚类分析法在过程中没有产生新变量。
主成分分析法:一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。
聚类分析法:理想的多变量统计技术,主要有分层聚类法和迭代聚类法。是研究分类的一种多元统计方法。你现在有了每个样本的主成分分值,用这些分值,对这些样本进行分类。 就是说,每个样本现在有三个值了,就是三个主成分的值,现在要看看那些样本比较相似。

『捌』 聚类分析在股票板块中的应用 急需此题论文!!

请先看看下面这教程,看能否找到你要的答案,不明再问我。。
www.fjmu.e.cn

『玖』 聚类的典型应用

“聚类的典型应用是什么?”在商务上,聚类能帮助市场分析人员从客户基本库中发现不同的客户群,并且用购买模式来刻画不同的客户群的特征。在生物学上,聚类能用于推导植物和动物的分类,对基因进行分类,获得对种群中固有结构的认识。聚类在地球观测数据库中相似地区的确定,汽车保险单持有者的分组,及根据房子的类型、价值和地理位置对一个城市中房屋的分组上也可以发挥作用。聚类也能用于对Web上的文档进行分类,以发现信息。

热点内容
什么样的理财保险能买 发布:2025-07-11 04:52:45 浏览:171
期货早盘低位满仓怎么回事 发布:2025-07-11 04:51:16 浏览:811
金融理论有什么好处 发布:2025-07-11 04:38:25 浏览:423
中环环保股票历史交易数据 发布:2025-07-11 04:34:30 浏览:824
股市中委比是什么意思 发布:2025-07-11 04:33:27 浏览:811
韩红爱心基金会怎么捐款 发布:2025-07-11 04:29:56 浏览:53
600702沱牌舍得股票历史股价 发布:2025-07-11 03:54:46 浏览:77
期货交割量为什么少 发布:2025-07-11 03:54:37 浏览:210
股市今天跌停的有多少股票 发布:2025-07-11 03:29:34 浏览:47
壳基金是什么意思 发布:2025-07-11 03:06:44 浏览:792