股票市场情绪量化研究
1. 什么是股票的量化交易的原理
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
量化交易具有以下几个方面的特点:
1、纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。
2、系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。
3、套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。
4、概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。
量化交易风险具体包括:
1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。行情数据自身风格转换,也可能导致模型失败,如交易流动性,价格波动幅度,价格波动频率等,而这一点是量化交易难以克服的。
2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生爆仓现象。
3、网络中断,硬件故障也可能对量化交易产生影响。
4、同质模型产生竞争交易现象导致的风险。
5、单一投资品种导致的不可预测风险。
2. 什么是量化投资
量化投资指的是一种投资方法,它是指通过数量化方式或计算机程序化发出买卖指令,以得到稳定收益为目标的交易方式。量化投资是一种定性思想的量化应用,它对大量的指标数据进行分析,得出一些有说服力的数据结论,然后通过计算机技术进行数学建模,并进行量化分析,从而得出一个比较契合实际的投资策略。
量化投资是指通过数量化方式及计算机程序化发出买卖指令,以获取稳定收益为目的的交易方式。在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。从全球市场的参与主体来看,按照管理资产的规模,全球排名前四以及前六位中的五家资管机构,都是依靠计算机技术来开展投资决策,由量化及程序化交易所管理的资金规模在不断扩大。
3. 股民们常说的股市情绪指的是什么如何才能观察到这种情绪
股民们常说的股市情绪指的是市场的赚钱效应,要观察到这种情绪,需要做这些努力:
1.市场情绪就是市场的赚钱效应,你必须对整个股市有一个大概的了解,知道它们属于什么板块;
2.每天研究市场热点,找出市场领涨股,观察它们对板块和大盘的影响,从板块中发现市场赚钱效应;
3.每天交易都要写计划,操作之后都要反思对与错,市场热点是否符合你的预判,如果不适合错误在哪里?经过不断地思考和总结,盘感就会增加,观察市场情绪的能力也会提高。
投资高手都善于用市场情绪进行交易,市场情绪就是市场的赚钱效应,当市场赚钱效应比较好的时候,很多人就会满仓买卖股票,当市场情绪比较差的时候,他们就会控制仓位,耐心等待机会。观察市场情绪是每个投资者的基本功,只有深刻理解市场情绪,我们才可能在股市取得成功。
三、投资股市需要不断地反思
任何行业要想取得成功,反思都必不可少,股市投资也一样,我们一定要做交易计划,我们的预判跟市场为什么不同?出现亏损的原因是什么?这些都需要不断反思,不断总结,这样才能够提高我们的交易能力和情绪观察能力。
4. 量化分析方法有几种
量化分析法是对通过定性风险分析排出优先顺序的风险进行量化分析。尽管有经验的风险经理有时在风险识别之后直接进行定量分析,但定量风险分析一般在定性风险分析之后进行。定量风险分析一般应当在确定风险应对计划时再次进行,以确定项目总风险是否已经减少到满意。重复进行定量风险分析反映出来的趋势可以指出需要增加还是减少风险管理措施,它是风险应对计划的一项依据,并作为风险监测和控制的组成部分。
(一)技术分析法
技术分析法的主要目标是通过对市场的历史数据的研究,特别是对价格和交易量的研究,来预测价格的变动方向。技术分析法通常分析市场价格图标,因此技术分析师被称为“图表分析专家”。目的在于识别价格模式和市场趋势,从而试图预测未来的变化趋势。技术分析法的原理包括市场行为包容一切信息(技术分析法旨在弄明白投资者对于此类信息的反应),价格以趋势方式演变,历史价格趋于重演,并且投资者具有重蹈先前投资者覆辙的特征。
(二)基本面分析法
基本面分析法重点分析经济状态、利率、通货膨胀、公司收益、公司资产负债表、以及中央银行和政府的相关政策。
当基本面分析法应用于选股时,通常会结合对经济整体方向自上而下的分析(宏观),从而形成对于市场、行业、利率水平以及汇率水平的观点,并加之运用自下而上的方法对于某只股票进行分析(微观)。自下而上的分析往往会忽略在国别以及产业方面的整体配置而关注于单只股票的选择。根据投资理念和投资过程,自上而下的分析决定了国别和行业的配置;同时,自下而上的分析则决定了某一国家和行业内部的投资配置。
(三)量化分析法
量化(定量)分析法,正如其名,包括运用量化方法、统计模型、数学公式以及算法来预测市场走向。在战术型资产配置中一个常见的方法便是使用多因子模型,通过分析估值、动量指标、风险水平、市场情绪、利率、收益率曲线等因素,从而推导出涵盖股票、债券和外汇市场等不同市场的买入和卖出信号。虽然有一部分战术型资产配置策略完全是量化模型驱动的,但将量化分析和基本面分析相结合将更具活力,因为这种结合可以将量化信号融合入基本面分析的过程中。
量化分析的不足在于该分析很大程度上是以观测到的市场价格的历史关联性和走势为基础。如果上述关联性和走势由于市场反转或市场承压而引起历史关联性发生变化而失效,那么量化模型可能会在预测拐点过程中失效。量化模型往往也会在出现政权更替或市场结构化改变时失效。
5. 股票量化交易是什么
量化交易个以前的股票交易本质没有区别,只是提高了工作效率,
量化交易分为量化分析和程序化自动交易
量化分析,如果你是普通散户我现在问几个问题,第一MACD指标默认参数下,在三千多只股票日k上近两年那只收益最好,那只亏损最大。这要人工多大的工作量,如果会写程序代码,几行代码就解决了。在继续如果调换MACD参数能否增加收益用那几个参数是最优组合,这要是人工基本无法完成,计算量太大了,但计算机就很快完成了参数优化。
而且量化分析不是技术分析,例如你问一个价值投资者,三千多家上市公司,你知道有多少家连续10年都没亏损过吗,同样几行代码就知道。
假如你听了一个老师的讲课,说他的牛x战法,普散户听了你只能价单试试,但量化分析我可以在不同市场不同时间周期,不同品种,进行回测严重,优化。这些就是量化分析。
程序化自动交易。
就是利用计算机技术自动交易,这对于散户比较难实现,简单的用第三方然间写几个交易策略可以实现自动交易。
但当你交易上你就会发现,滑点问题,你的速度不够快,需要专线网络,需要底层语言的交易系统,高速的硬件设备。
但散户还是必须要进行量化学习因为这样才能更好的帮助你分析。
下图就是最简单的趋势指标
6. 股票量化交易是什么意思
股票量化交易,就是将股票市场所有的股票信息,比如股票的涨跌历史数据,成交量历史数据,股票的基本面历史数据,指数涨跌历史数据等等全部输入计算机,进行大数据分析,之后根据大数据选择出炒股成功率最高的方案,并设计成计算机自动操盘模式,称为量化交易。
量化交易
所谓量化交易,是指以先进的数学模型替代人为的主观判断,同时利用计算机技术从庞大的历史数据中海选出能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
量化选股就是利用数量化的方法选择股票组合,期望该股票组合能够获得超越基准收益率的投资行为,研究表明,板块、行业轮动在机构投资者的交易中最为获利的盈利模式是基于行业层面进行周期性和防御性的轮动配置,这也是机构投资者最普遍采用的策略。此外,周期性股票在扩张性货币政策时期表现较好,而在紧缩环境下则支持非周期性行业。行业收益差在扩张性政策和紧缩性政策下具有显著的差异。
量化交易潜在风险
1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。行情数据自身风格转换,也可能导致模型失败,如交易流动性,价格波动幅度,价格波动频率等,而这一点是量化交易难以克服的。
2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生爆仓现象。
3、网络中断,硬件故障也可能对量化交易产生影响。
4、同质模型产生竞争交易现象导致的风险。
5、单一投资品种导致的不可预测风险。
7. 股票量化是什么意思
所谓量化交易,是指以先进的数学模型替代人为的主观判断,同时利用计算机技术从庞大的历史数据中海选出能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
量化选股就是利用数量化的方法选择股票组合,期望该股票组合能够获得超越基准收益率的投资行为,研究表明,板块、行业轮动在机构投资者的交易中最为获利的盈利模式是基于行业层面进行周期性和防御性的轮动配置,这也是机构投资者最普遍采用的策略。此外,周期性股票在扩张性货币政策时期表现较好,而在紧缩环境下则支持非周期性行业。行业收益差在扩张性政策和紧缩性政策下具有显著的差异。
拓展资料:
一、量化交易特点
1、纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。
2、系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。
3、套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。
4、概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。
二、量化交易潜在风险
1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。行情数据自身风格转换,也可能导致模型失败,如交易流动性,价格波动幅度,价格波动频率等,而这一点是量化交易难以克服的。
2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生爆仓现象。
3、网络中断,硬件故障也可能对量化交易产生影响。
4、同质模型产生竞争交易现象导致的风险。
5、单一投资品种导致的不可预测风险。
8. 行为金融理论与投资者情绪有什么区别
行为金融理论与投资者情绪的区别:
首先,行为金融理论是在对现代金融理论(尤其是在对EMH和CAPM)的挑战和质疑的背景下形成的。行为金融理论在博弈论和实验经济学被主流经济学接纳之际,对人类个体和群体行为研究的日益重视,促成了传统的力学研究方式向以生命为中心的非线性复杂范式的转换,使得我们看到了金融理论与实际的沟壑有了弥合的可能。行为金融理论将人类心理与行为纳入金融的研究框架,但是由于涉及人类心理与行为研究的难度,加上行为金融刚刚起步,因而其本身也存在很多缺陷。
然后,投资者情绪是指投资者对未来预期的系统性偏差称作投资者情绪(stein,1996)。投资者情绪是个难以度量的概念,它反映了市场参与者的投资意愿或者预期。投资者能感觉到它的客观存在,但是要问它到底有多高、近期发生了何种变化,每个个体的投资者有因为有持仓、风格、财富、地位等因素的不同,给出不同的答案。不过所有人都难以否认的是,投资者情绪有是个非常重要的概念,在经济活动中,情绪是个不确定因素,它影响到投资者对未来收益的主观判断,进而影响到其投资行为,形成合力后,对市场会形成很大的影响。投资者情绪对未来市场波动的影响逻辑在于对正面消息、负面消息的逐级正反馈放大。
9. 关于国内投资者情绪和股票收益之间相关性的如何量化"投资者情绪" (investor sentiment)的方法
个人认为活跃账户数、新开户数、休眠账户和僵尸账户数目的变化可以作为一个很好的投资者情绪的量化指标。因为这些数字的变化可以很好的反映当时的市场氛围,人们的期望和失望,并且一定和市场是否有赚钱效应息息相关。另外,券商从业人员的编制状况也是另外一个可研究的标的。
以上数据是能查到的,至于是否英文就不确定了,不过能写硕士论文,你的英文水平应该足够翻译的了。呵呵
祝论文顺利完成!