当前位置:首页 » 市值市价 » hmm在股票市场指数中的应用

hmm在股票市场指数中的应用

发布时间: 2022-05-26 17:48:24

1. 求论文(语音识别)

与机器进行语音交流,让机器明白你说什么,这是人们长期以来梦寐以求的事情。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门交叉学科。近二十年来,语音识别技术取得显著进步,开始从实验室走向市场。人们预计,未来10年内,语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。
语音识别听写机在一些领域的应用被美国新闻界评为1997年计算机发展十件大事之一。很多专家都认为语音识别技术是2000年至2010年间信息技术领域十大重要的科技发展技术之一。
语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。 任务分类和应用 根据识别的对象不同,语音识别任务大体可分为3类,即孤立词识别(isolated word recognition),关键词识别(或称关键词检出,keyword spotting)和连续语音识别。其中,孤立词识别 的任务是识别事先已知的孤立的词,如“开机”、“关机”等;连续语音识别的任务则是识别任意的连续语音,如一个句子或一段话;连续语音流中的关键词检测针对的是连续语音,但它并不识别全部文字,而只是检测已知的若干关键词在何处出现,如在一段话中检测“计算机”、“世界”这两个词。
根据针对的发音人,可以把语音识别技术分为特定人语音识别和非特定人语音识别,前者只能识别一个或几个人的语音,而后者则可以被任何人使用。显然,非特定人语音识别系统更符合实际需要,但它要比针对特定人的识别困难得多。
另外,根据语音设备和通道,可以分为桌面(PC)语音识别、电话语音识别和嵌入式设备(手机、PDA等)语音识别。不同的采集通道会使人的发音的声学特性发生变形,因此需要构造各自的识别系统。
语音识别的应用领域非常广泛,常见的应用系统有:语音输入系统,相对于键盘输入方法,它更符合人的日常习惯,也更自然、更高效;语音控制系统,即用语音来控制设备的运行,相对于手动控制来说更加快捷、方便,可以用在诸如工业控制、语音拨号系统、智能家电、声控智能玩具等许多领域;智能对话查询系统,根据客户的语音进行操作,为用户提供自然、友好的数据库检索服务,例如家庭服务、宾馆服务、旅行社服务系统、订票系统、医疗服务、银行服务、股票查询服务等等。 前端前端处理是指在特征提取之前,先对原始语音进行处理,部分消除噪声和不同说话人带来的影响,使处理后的信号更能反映语音的本质特征。最常用的前端处理有端点检测和语音增强。端点检测是指在语音信号中将语音和非语音信号时段区分开来,准确地确定出语音信号的起始点。经过端点检测后,后续处理就可以只对语音信号进行,这对提高模型的精确度和识别正确率有重要作用。语音增强的主要任务就是消除环境噪声对语音的影响。目前通用的方法是采用维纳滤波,该方法在噪声较大的情况下效果好于其它滤波器。处理声学特征 声学特征的提取与选择是语音识别的一个重要环节。声学特征的提取既是一个信息大幅度压缩的过程,也是一个信号解卷过程,目的是使模式划分器能更好地划分。由于语音信号的时变特性,特征提取必须在一小段语音信号上进行,也即进行短时分析。这一段被认为是平稳的分析区间称之为帧,帧与帧之间的偏移通常取帧长的1/2或1/3。通常要对信号进行预加重以提升高频,对信号加窗以避免短时语音段边缘的影响。常用的一些声学特征* 线性预测系数LPC:线性预测分析从人的发声机理入手,通过对声道的短管级联模型的研究,认为系统的传递函数符合全极点数字滤波器的形式,从而n 时刻的信号可以用前若干时刻的信号的线性组合来估计。通过使实际语音的采样值和线性预测采样值之间达到均方差最小LMS,即可得到线性预测系数LPC。对 LPC的计算方法有自相关法(德宾Durbin法)、协方差法、格型法等等。计算上的快速有效保证了这一声学特征的广泛使用。与LPC这种预测参数模型类似的声学特征还有线谱对LSP、反射系数等等。
* 倒谱系数CEP:利用同态处理方法,对语音信号求离散傅立叶变换DFT后取对数,再求反变换iDFT就可得到倒谱系数。对LPC倒谱(LPCCEP),在获得滤波器的线性预测系数后,可以用一个递推公式计算得出。实验表明,使用倒谱可以提高特征参数的稳定性。
* Mel倒谱系数MFCC和感知线性预测PLP:不同于LPC等通过对人的发声机理的研究而得到的声学特征,Mel倒谱系数MFCC和感知线性预测 PLP是受人的听觉系统研究成果推动而导出的声学特征。对人的听觉机理的研究发现,当两个频率相近的音调同时发出时,人只能听到一个音调。临界带宽指的就是这样一种令人的主观感觉发生突变的带宽边界,当两个音调的频率差小于临界带宽时,人就会把两个音调听成一个,这称之为屏蔽效应。Mel刻度是对这一临界带宽的度量方法之一。
MFCC的计算首先用FFT将时域信号转化成频域,之后对其对数能量谱用依照Mel刻度分布的三角滤波器组进行卷积,最后对各个滤波器的输出构成的向量进行离散余弦变换DCT,取前N个系数。PLP仍用德宾法去计算LPC参数,但在计算自相关参数时用的也是对听觉激励的对数能量谱进行DCT的方法。声学模型语音识别系统的模型通常由声学模型和语言模型两部分组成,分别对应于语音到音节概率的计算和音节到字概率的计算。本节和下一节分别介绍声学模型和语言模型方面的技术。
HMM声学建模:马尔可夫模型的概念是一个离散时域有限状态自动机,隐马尔可夫模型HMM是指这一马尔可夫模型的内部状态外界不可见,外界只能看到各个时刻的输出值。对语音识别系统,输出值通常就是从各个帧计算而得的声学特征。用HMM刻画语音信号需作出两个假设,一是内部状态的转移只与上一状态有关,另一是输出值只与当前状态(或当前的状态转移)有关,这两个假设大大降低了模型的复杂度。HMM的打分、解码和训练相应的算法是前向算法、Viterbi算法和前向后向算法。
语音识别中使用HMM通常是用从左向右单向、带自环、带跨越的拓扑结构来对识别基元建模,一个音素就是一个三至五状态的HMM,一个词就是构成词的多个音素的HMM串行起来构成的HMM,而连续语音识别的整个模型就是词和静音组合起来的HMM。上下文相关建模:协同发音,指的是一个音受前后相邻音的影响而发生变化,从发声机理上看就是人的发声器官在一个音转向另一个音时其特性只能渐变,从而使得后一个音的频谱与其他条件下的频谱产生差异。上下文相关建模方法在建模时考虑了这一影响,从而使模型能更准确地描述语音,只考虑前一音的影响的称为Bi- Phone,考虑前一音和后一音的影响的称为Tri-Phone。
英语的上下文相关建模通常以音素为基元,由于有些音素对其后音素的影响是相似的,因而可以通过音素解码状态的聚类进行模型参数的共享。聚类的结果称为senone。决策树用来实现高效的triphone对senone的对应,通过回答一系列前后音所属类别(元/辅音、清/浊音等等)的问题,最终确定其HMM状态应使用哪个senone。分类回归树CART模型用以进行词到音素的发音标注。 语言模型语言模型主要分为规则模型和统计模型两种。统计语言模型是用概率统计的方法来揭示语言单位内在的统计规律,其中N-Gram简单有效,被广泛使用。
N-Gram:该模型基于这样一种假设,第n个词的出现只与前面N-1个词相关,而与其它任何词都不相关,整句的概率就是各个词出现概率的乘积。这些概率可以通过直接从语料中统计N个词同时出现的次数得到。常用的是二元的Bi-Gram和三元的Tri-Gram。
语言模型的性能通常用交叉熵和复杂度(Perplexity)来衡量。交叉熵的意义是用该模型对文本识别的难度,或者从压缩的角度来看,每个词平均要用几个位来编码。复杂度的意义是用该模型表示这一文本平均的分支数,其倒数可视为每个词的平均概率。平滑是指对没观察到的N元组合赋予一个概率值,以保证词序列总能通过语言模型得到一个概率值。通常使用的平滑技术有图灵估计、删除插值平滑、Katz平滑和Kneser-Ney平滑。 搜索连续语音识别中的搜索,就是寻找一个词模型序列以描述输入语音信号,从而得到词解码序列。搜索所依据的是对公式中的声学模型打分和语言模型打分。在实际使用中,往往要依据经验给语言模型加上一个高权重,并设置一个长词惩罚分数。
Viterbi:基于动态规划的Viterbi算法在每个时间点上的各个状态,计算解码状态序列对观察序列的后验概率,保留概率最大的路径,并在每个节点记录下相应的状态信息以便最后反向获取词解码序列。Viterbi算法在不丧失最优解的条件下,同时解决了连续语音识别中HMM模型状态序列与声学观察序列的非线性时间对准、词边界检测和词的识别,从而使这一算法成为语音识别搜索的基本策略。
由于语音识别对当前时间点之后的情况无法预测,基于目标函数的启发式剪枝难以应用。由于Viterbi算法的时齐特性,同一时刻的各条路径对应于同样的观察序列,因而具有可比性,束Beam搜索在每一时刻只保留概率最大的前若干条路径,大幅度的剪枝提高了搜索的效率。这一时齐Viterbi- Beam算法是当前语音识别搜索中最有效的算法。 N-best搜索和多遍搜索:为在搜索中利用各种知识源,通常要进行多遍搜索,第一遍使用代价低的知识源,产生一个候选列表或词候选网格,在此基础上进行使用代价高的知识源的第二遍搜索得到最佳路径。此前介绍的知识源有声学模型、语言模型和音标词典,这些可以用于第一遍搜索。为实现更高级的语音识别或口语理解,往往要利用一些代价更高的知识源,如4阶或5阶的N-Gram、4阶或更高的上下文相关模型、词间相关模型、分段模型或语法分析,进行重新打分。最新的实时大词表连续语音识别系统许多都使用这种多遍搜索策略。
N-best搜索产生一个候选列表,在每个节点要保留N条最好的路径,会使计算复杂度增加到N倍。简化的做法是只保留每个节点的若干词候选,但可能丢失次优候选。一个折衷办法是只考虑两个词长的路径,保留k条。词候选网格以一种更紧凑的方式给出多候选,对N-best搜索算法作相应改动后可以得到生成候选网格的算法。
前向后向搜索算法是一个应用多遍搜索的例子。当应用简单知识源进行了前向的Viterbi搜索后,搜索过程中得到的前向概率恰恰可以用在后向搜索的目标函数的计算中,因而可以使用启发式的A算法进行后向搜索,经济地搜索出N条候选。 系统实现 语音识别系统选择识别基元的要求是,有准确的定义,能得到足够数据进行训练,具有一般性。英语通常采用上下文相关的音素建模,汉语的协同发音不如英语严重,可以采用音节建模。系统所需的训练数据大小与模型复杂度有关。模型设计得过于复杂以至于超出了所提供的训练数据的能力,会使得性能急剧下降。
听写机:大词汇量、非特定人、连续语音识别系统通常称为听写机。其架构就是建立在前述声学模型和语言模型基础上的HMM拓扑结构。训练时对每个基元用前向后向算法获得模型参数,识别时,将基元串接成词,词间加上静音模型并引入语言模型作为词间转移概率,形成循环结构,用Viterbi算法进行解码。针对汉语易于分割的特点,先进行分割再对每一段进行解码,是用以提高效率的一个简化方法。
对话系统:用于实现人机口语对话的系统称为对话系统。受目前技术所限,对话系统往往是面向一个狭窄领域、词汇量有限的系统,其题材有旅游查询、订票、数据库检索等等。其前端是一个语音识别器,识别产生的N-best候选或词候选网格,由语法分析器进行分析获取语义信息,再由对话管理器确定应答信息,由语音合成器输出。由于目前的系统往往词汇量有限,也可以用提取关键词的方法来获取语义信息。 自适应与强健性 语音识别系统的性能受许多因素的影响,包括不同的说话人、说话方式、环境噪音、传输信道等等。提高系统鲁棒性,是要提高系统克服这些因素影响的能力,使系统在不同的应用环境、条件下性能稳定;自适应的目的,是根据不同的影响来源,自动地、有针对性地对系统进行调整,在使用中逐步提高性能。以下对影响系统性能的不同因素分别介绍解决办法。
解决办法按针对语音特征的方法(以下称特征方法)和模型调整的方法(以下称模型方法)分为两类。前者需要寻找更好的、高鲁棒性的特征参数,或是在现有的特征参数基础上,加入一些特定的处理方法。后者是利用少量的自适应语料来修正或变换原有的说话人无关(SI)模型,从而使其成为说话人自适应(SA)模型。
说话人自适应的特征方法有说话人规一化和说话人子空间法,模型方法有贝叶斯方法、变换法和模型合并法。
语音系统中的噪声,包括环境噪声和录音过程加入的电子噪声。提高系统鲁棒性的特征方法包括语音增强和寻找对噪声干扰不敏感的特征,模型方法有并行模型组合PMC方法和在训练中人为加入噪声。信道畸变包括录音时话筒的距离、使用不同灵敏度的话筒、不同增益的前置放大和不同的滤波器设计等等。特征方法有从倒谱矢量中减去其长时平均值和RASTA滤波,模型方法有倒谱平移。 微软语音识别引擎 微软在office和vista中都应用了自己开发的语音识别引擎,微软语音识别引擎的使用是完全免费的,所以产生了许多基于微软语音识别引擎开发的语音识别应用软件,例如《语音游戏大师》《语音控制专家》《芝麻开门》等等软件。 语音识别系统的性能指标 语音识别系统的性能指标主要有四项。①词汇表范围:这是指机器能识别的单词或词组的范围,如不作任何限制,则可认为词汇表范围是无限的。②说话人限制:是仅能识别指定发话者的语音,还是对任何发话人的语音都能识别。③训练要求:使用前要不要训练,即是否让机器先“听”一下给定的语音,以及训练次数的多少。④正确识别率:平均正确识别的百分数,它与前面三个指标有关。
小结
以上介绍了实现语音识别系统的各个方面的技术。这些技术在实际使用中达到了较好的效果,但如何克服影响语音的各种因素还需要更深入地分析。目前听写机系统还不能完全实用化以取代键盘的输入,但识别技术的成熟同时推动了更高层次的语音理解技术的研究。由于英语与汉语有着不同的特点,针对英语提出的技术在汉语中如何使用也是一个重要的研究课题,而四声等汉语本身特有的问题也有待解决。

2. 如何用简单易懂的例子解释条件随机场模型它和HMM有什么区别

概率模型与条件随机场

1、概率模型
机器学习中的很多模型可以根据概率分布形式分为生成模型和判别模型,其中生成模型以输入输出的联合分布P(X,Y)为基础建模,如朴素贝叶斯、隐马尔可夫模型;判别模型以条件概率分布P(Y|X)为基础建模,如最大熵模型、条件随机场等。这几个模型之间有一定的关系,它们的关系如下:

其中,NB表示朴素贝叶斯,ME表示最大熵,HMM表示隐马尔科夫,CRF表示条件随机场。joint联合分布,conditional条件分布。single class输出单一类别,sequence输出序列。例如,朴素贝叶斯将输出y扩展成序列(y1,y2,...,yn),就可以以此为基础构造HMM;在满足输入条件下的HMM可以扩展成CRF。

这里面,朴素贝叶斯假设最强 ,因为它要求所有输入特征之间条件独立,如P(y|x1,x2,...,xn)=∏i=1nP(y|xi);这是一种为计算方便而做的近似假设,然而现实中基本不会有模型符合输入特征间的独立,因此以朴素贝叶斯建模一般会有精度损失。
隐马尔科夫模型进了一步,它考虑一定的变量相关性,如马尔科夫假设状态序列中,当前状态只与其前一个状态有关,如:

P(X,Y)=∏i=0nP(yi|yi−1P(xi|yi)
但是HMM只考虑了状态之间的邻接关系,没有考虑观测序列间的关系,条件随机场刚好弥补了这个缺陷。所以条件随机场是一个相对比较完善的模型,但代价是计算复杂性的提高。


2、概率图模型
上面讲到的概率模型可以用图的形式表示出来,称为概率图模型。概率图模型用图中结点表示随机变量,结点之间的边表示变量间的概率相关关系。

在概率图中,两结点没有边相连,说明两节点是条件独立的,比如P(a,b|c)=P(a|c)⋅P(b|c)。在概率图中,结点间全连接是不包含任何概率分布信息的,所以我们更关注的是哪些边是缺失的,这些缺失的边表示边连接的结点条件独立。

下图中的两个图是概率图的两种表示形式,一个是独立图,一个是因子图。通过条件独立的条件,可以将一个复杂的概率分布分解成简单的概率分布乘积,如下图中(a),联合概率分布P(x1,x2,y)=P(x1)⋅P(x2)⋅P(y|x1,x2)。
若定义因子,也称势函数Ψs为概率分布的分解因子,对任意概率图G=(V,E),有:

p(V)=∏sΨs(Vs)

其中,s表示随机变量构成的集合,Vs表示该集合中包含的变量。
则可以将P(x1,x2,y)写成P(x1,x2,y)=Ψ1⋅Ψ2⋅Ψ3,这里的Ψi分别与独立图中的概率对应。

概率图模型可大致分为两类:一类是有向图模型,表示变量间的依赖关系,也称为贝叶斯网;一类是无向图模型,表示变量间的相关关系,也称为马尔科夫网或马尔科夫随机场。
2.1 有向图模型
在有向图中,边表示了变量之间的一种依赖关系。联合分布概率可以写作是所有变量在在父节点条件下的概率乘积:

P(V)=∏i=1KP(vk|vnk)

如下图所示的隐马尔可夫有向图,联合概率可以写作:

P(x1,x2,x3,y1,y2,y3)=Ψ1(y1)⋅Ψ2(x1,y1)⋅Ψ3(x2,y2)⋅Ψ4(x3,y3)⋅Ψ5(y1,y2)⋅Ψ6(y2,y3)

2.2 无向图模型
在无向图模型中,有个团和最大团的概念,表示了变量之间的关系。团的意思是一些随机变量结点构成的子集中,两两结点都有边相连,如下图中(1,2)、(1,2,5)等;最大团表示结点构成的团中再添加任何一个新结点后都不会构成团,如(1,4,5)。在一些线性链结构的无向图,如线性链条件随机场中,最大团只考虑(yj−1,yj,x)。

像有向图的分解一样,无向图也可以分解,无向图是基于最大团进行分解,如下:

P(V)=1Z∏C∈CΨC(VC)

其中每个最大团对应一个势函数ΨC。是不是跟最大熵模型的形式很相似?因为最大熵模型也是一个无向图模型。像在最大熵模型中一样,Z是一个归一化因子,如下:

Z=∑V∏C∈CΨC(VC)

一般,势函数要求严格非负,所以在使用中会选择指数函数作为势函数。如下图的一个最大熵模型,可以写作:

P(y|x)=1Zλ(x)eλ1f1⋅eλ2f2⋅eλ3f3


有向图与无向图的一个主要区别在于概率分布的分解不同,在概率有向图中,分解因子是条件概率分布;在无向图中,分解因子可以是任意函数,无向图不需要说明变量间是如何关联的,而是将在一个团中的变量作为一个整体来看。
**3、条件随机场**
在前面,我们说可以把隐马尔科夫模型看作是对贝叶斯模型的序列化;类似地,我们可以把条件随机场看作是对最大熵模型的序列化。条件随机场并不要求线性序列,即它可以是任意结构的,通常我们使用较多的是线性链随机场,它可以看作是有条件的HMM(即加入了观测序列x的条件)。
条件随机场属于判别模型,即它要求出在观测序列x的条件下得到可能输出序列y的概率P(y|x)。
由上面的无向图分解公式

P(V)=1Z∏C∈CΨC(VC)

条件概率P(y|x)可以写作:

p(y|x)=p(x,y)p(x)
=p(x,y)∑y′p(y′,x)
=1Z∏C∈CΨC(xC,yC)1Z∑y′∏C∈CΨC(xC,yC)
=1Z(x)∏C∈CΨC(xC,yC)

其中,

Z(x)=∑y′∏C∈CΨC(xC,yC)


下面介绍一下常用的线性链条件随机场,
线性链CRFs是条件随机场中的一种特殊结构,与隐马尔科夫一样,输出形成一个线性序列,如下图:

根据上面的公式,其条件概率可以写作,


p(y|x)=1Z(x)∏j=1nΨj(x,y)

其中,n+1表示输出状态序列长度,n为势函数个数。
由图可知,状态yj与输入x和yj−1有关,特征函数可以写作:
f(yj−1,yj,x,j)
势函数:
Ψj(x,y)=exp(∑i=1mλifi(yj−1,yj,x,j))
进而,线性链CRFs的条件概率分布可以写作,

pλ(y|x)=1Zλ(x)exp(∑nj=1∑i=1mλifi(yj−1,yj,x,j))

其中,Zλ(x)是归一化因子,


3. 在中国,做量化交易一天的工作是怎样的

做量化交易一天的工作:

8:00~9:00: 打开交易策略,设置一些运营参数

9:00~9:30: 观察策略运转,确保没有问题

9:30~15:30: 解决已有策略的问题并研究新策略,测试新想法

15:30~17:00: 分析交易记录, 确定第二天的交易计划

17:00~18:00: 运动

岗位职责:
分析金融市场(期货、股票等)数据,寻找可利用的机会;开发与维护量化交易策略;提供机器学习/数据挖掘相应的技术支持;

岗位要求:
1.熟练计算机编程能力,熟练掌握至少一门编程语言,python优先;

理工科背景,具有良好的数理统计、数据挖掘等相关知识储备,熟悉机器学习方法(分析科学问题和相应数据,建立模型和方法,验证模型和方法,应用模型和方法并分析结果,改进模型和方法);

有处理分析大量数据的经验,并能熟练选择和应用数据挖掘和机器学习方法解决科研和工作中的实际问题;良好的自我学习和快速 学习能力,有工作激情,喜欢金融行业;两年及以上实验室研究经验或研发类工作经验优先;

(3)hmm在股票市场指数中的应用扩展阅读

量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,

极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

4. 深度学习在语音识别方面主要的难题和困难是什么

深度学习的应用:语音识别系统长期以来,在描述每个建模单元的统计概率模型时,大多采用的是混合高斯模型(GMM)。这种模型由于估计简单,适合海量数据训练,同时有成熟的区分度训练技术支持,长期以来,一直在语音识别应用中占有垄断性地位。但这种混合高斯模型本质上是一种浅层网络建模,不能充分描述特征的状态空间分布。另外,GMM建模的特征维数一般是几十维,不能充分描述特征之间的相关性。最后,GMM建模本质上是一种似然概率建模,虽然区分度训练能够模拟一些模式类之间的区分性,但能力有限。微软研究院语音识别专家邓立和俞栋从2009年开始和深度学习专家GeofferyHinton合作。2011年微软宣布基于深度神经网络的识别系统取得成果并推出产品,彻底改变了语音识别原有的技术框架。采用深度神经网络后,可以充分描述特征之间的相关性,可以把连续多帧的语音特征并在一起,构成一个高维特征。最终的深度神经网络可以采用高维特征训练来模拟。由于深度神经网络采用模拟人脑的多层结果,可以逐级地进行信息特征抽取,最终形成适合模式分类的较理想特征。这种多层结构和人脑处理语音图像信息时,是有很大的相似性的。深度神经网络的建模技术,在实际线上服务时,能够无缝地和传统的语音识别技术相结合,在不引起任何系统额外耗费情况下,大幅度提升了语音识别系统的识别率。其在线的使用方法具体如下:在实际解码过程中,声学模型仍然是采用传统的HMM模型,语音模型仍然是采用传统的统计语言模型,解码器仍然是采用传统的动态WFST解码器。但在声学模型的输出分布计算时,完全用神经网络的输出后验概率乘以一个先验概率来代替传统HMM模型中的GMM的输出似然概率。网络在实践中发现,采用DNN进行声音建模的语音识别系统相比于传统的GMM语音识别系统而言,相对误识别率能降低25%。最终在2012年11月,网络上线了第一款基于DNN的语音搜索系统,成为最早采用DNN技术进行商业语音服务的公司之一。

国际上,Google也采用了深层神经网络进行声音建模,是最早突破深层神经网络工业化应用的企业之一。但Google产品中采用的深度神经网络只有4-5层,而网络采用的深度神经网络多达9层。这种结构差异的核心其实是网络更好地解决了深度神经网络在线计算的技术难题,因此网络线上产品可以采用更复杂的网络模型。这将对于未来拓展海量语料的DNN模型训练有更大的优势。

5. 如何系统地学习量化交易

首先,我对这个问题是完全不知道怎么回答,为此,我专门去请教了我的老师。


  • 我理解很难有一个定量交易的所谓的系统学习过程,定量的只是手段,交易逻辑是多样的,你可以通过形态描述,追踪市场方法,如不合理的降价,也可以把天体物理、小波分析、神经网络等复杂模型应用其中,你可以做的是K线结构上的策略,也可以做日线或每500毫秒数据进行决策的策略。所有的一切目的就是为了获利,所谓量化和程序化只是实现这一目的的手段。

  • 一个strategist需要思考策略的思维框架,实现方式,而developer则是侧重了前后端接口,输入输出,界面设置,风控机制,平台拼接等等很多很多方面。其实很不相同吧。

6. 怎样理解fama french三因子模型

Fama 和French 1993年指出可以建立一个三因子模型来解释股票回报率。模型认为,一个投资组合(包括单个股票)的超额回报率可由它对三个因子的暴露来解释,这三个因子是:市场资产组合(Rm− Rf)、市值因子(SMB)、账面市值比因子(HML)。这个多因子均衡定价模型可以表示为:
E(Rit) − Rft= βi[E(Rmt− Rft] + siE(SMBt) + hiE(HMIt)
其中Rft表示时间t的无风险收益率;Rmt表示时间t的市场收益率;Rit表示资产i在时间t的收益率;E(Rmt) − Rft是市场风险溢价,SMBt为时间t的市值(Size)因子的模拟组合收益率(Small minus Big),HMIt为时间t的账面市值比(book—to—market)因子的模拟组合收益率(High minus Low)。
β、si和hi分别是三个因子的系数,回归模型表示如下:
Rit− Rft= ai+ βi(Rmt− Rft) + SiSMBt+ hiHMIt+ εit
但是,我们应该看到,三因子模型并不代表资本定价模型的完结,在最近的研究发现,三因子模型中还有很多未被解释的部分,如短期反转、中期动量、波动、偏度、赌博等因素。

7. 股民如何在收盘前半个小时进行选股

收盘价是一天当中最重要的价格。收盘价的高低显示了整个交易日多空双方争斗的最终结果,也将为下个交易日的开盘价提供重要依据。因此,尾盘往往是多空双方争斗最激烈的时刻。
超短线操作的本质是为了规避长期持股中的风险,获得短线利润。超短线投资者买进股票后,一两天内必然择机卖出,无论盈亏都必须在短期内轧平账户,不参与沉闷而漫长的盘整。在目前t 1的交易制度下,买进后一旦发生风险当日不得卖出,因此短线客常将买入时间选择在收盘前的30分钟,此时间段内不跌的话,第二天任何时间感觉有风险就可随时卖出。
同时,由于早盘和盘中的走势具有较多的不确定性因素,到了尾盘,许多不确定性因索已经消失,多空双方的力量对比基本可以确定。这便得不少短线投资者喜欢在尾盘进行交易。尾盘阶段往往可以成为整个交易日内交易最活跃的时刻。
收盘半小时选股技巧案例
行情危险!散户应该尽快离场?哪些股票值得满仓买入?某些股很可能还要涨50%!机构资金目前已发生大变化
1、14:00左右在涨幅1%~3.5%的个股中筛选,数量不宜过多,过多管理不过来,也不宜过少,如果就一只,那么万一机会错过就没有备选股了。当市场交易相对活跃的时候可以在涨幅1.5%~3.5%的品种中进行筛选,当市场相对清淡,但仍有一定人气的时候可以在涨幅1%~2%的个股中筛选。筛选个股的时候应该至少要看进7日以上的短线技术走势,整体短线技术比较好的,选这样的个股成功率会高些。
2、对于短线反应比较灵敏且短线追涨能力比较娴熟的投资人,可以在14:30左右从涨幅5分钟的个股中进行选择操作。
选股时机
1、要在金色两点半的经常出现的一些时候开始操作,股市经常会这样,一种现象会持续出现一段时间,然后又相对沉寂一段时间。
2、指数上升趋势的时候没有必要采用此法,因为精明的投资人早就买进了;指数下降趋势中持续下跌的时候最好也不采用此法,因为即使你今日买进获利了,难保明日不低开低走,14:00后大盘走势不佳也适宜观望,因为这是给跃跃欲试的短线投资者泼冷水,人气迅速降温的情况下自然投资成功率大降。
3、金色两点半经常会出现在日K线图的某个整理形态范围内,在这个整理形态被突破前一些小主力在这些交易日里每天两点半利用这种手法来进行短线交易,获取差价利益或是出逃。如果你14:00以前就选好了个股,那么有时要注意它们有些经常会在14:00~14:30间就开始启动。
4、盘中有些个股呈现90度直角单线上升,一根直线一下就拉了4%以上的涨幅,成交量也突然集中爆炸式增长,那么这种机会要小心,经常不一定是主力的意图,所以这类个股短线多数表现不佳,容易冲高回落。
看买点——指标
其他辅助指标,如威廉指标和KDJ指标都提示当前是一个很好的购入机会。另外,股民可以选择等待,看看该股的走势再决定是否买入,因为此时股价在低位,上涨会受到多根均线的压力。
如果能够突破均线,那么股价可能会以均线作为支撑线,建立一个反弹的平台,那么股民购入股票的成本会高些。
但是,突破后股价上涨的概率较大,股民盈利的时间会缩短,当然,如果股价没有突破均线,股民也不要慌张,此时股价会下挫一些,股民可以在低位适当建仓,等待其突破均线,这样获利也会更多,当然,等待的时问可能会变长。
而且,这时的买入价更加接近庄家的买入价,更加安全,如图所示,股民可以选择在下挫的过程中买入,特别是收盘最后几分钟买入是最佳的时机。
黄金尾盘买入法
理论依据:
很多股票在经过全天三个半小时的涨跌,下午两点半以后大盘及很多个股的走势、趋势基本明朗,这时选择个股建仓的风险相对较小,尤其是买那些放量急涨的股票,第二天开盘后惯性上涨的可能性极高。而如果在上午买股票,很可能当天就被套牢,因为你在上午买了股票后,并不能非常准确地预测出这只股票在当天接下来的三个多小时的交易时间里的走势。尤其是在震荡市中,下午两点钟前后经常会“跳水”,上午买的股票一旦下午“跳水”里,第二天解套或盈利的机会很小。
技术要点:
1:尾盘放量急涨的股票重点关注,其第二天惯性上涨的可能性极大,安全性也比较高。第二天见势不妙逃跑机会也很多。
2:大盘急跌行情里,抗跌且成交量放大股票,显示主力护盘明显。则两点半后买入这类股票安全性很高,且这类股票极易成为后市的牛股。
3:从K技术形态选择,可重点关注尾盘强势突破整理平台股票。
操作关键——卖点
当然了,股民不能预测股价的走势,选择接近心理价位购买就可以了,不一定非买到最低。随后几日,该股在庄家进入之后,上涨迅速,股价一路上冲到11.3元附近,如图所示。我们不能太贪,学会伺机卖出。
收盘半小时选股技巧总结
压轴戏往往是在演出的最后时刻才播出,而庄家也是这样导演股票价格的。精明老到的股民不会贸然行动,因为股市就是人与人的博弈,既然庄家要最后出场,股民何尝不可最后出场,选股在最后一刻都不算迟。所以,收盘前选择并伺机买入股票,是一种选择快速收获的方法。
一般来说,收盘价对于短线投资者有较大的指导意义,尤其是在尾市,如果股价出现了放量上涨的态势,股价以当天较高的价格收盘,次日往往会有更突出的表现,因此此类个股有短线机会。但对于中长线投资者来说,关注收盘价往往是为了判断趋势的变化。当出现带长下影线的十字星时,一般意味着个股底部的来临,对于市场个股判断有积极的技术意义,反之则可以判断为个股走势的头部。

8. 怎样炒股才能获得高收益

才发现自己“献丑”了,最后一个“院”少爱江南历史悠久的雨巷,爱江南明媚的天空

热点内容
如何打造数字货币共识 发布:2025-06-20 22:58:00 浏览:920
丽人丽妆股票历史交易 发布:2025-06-20 22:51:32 浏览:577
股票交易记录导出 发布:2025-06-20 22:50:16 浏览:959
汽车金融销售顾问怎么样 发布:2025-06-20 22:49:40 浏览:824
建军节会对哪些股票有影响 发布:2025-06-20 22:45:22 浏览:224
货币消亡后物资怎么分 发布:2025-06-20 22:40:56 浏览:653
成果兑现的基金有哪些 发布:2025-06-20 21:52:21 浏览:551
商品期货交易如何开户 发布:2025-06-20 21:44:21 浏览:619
怎么分辨虚假数字货币 发布:2025-06-20 21:33:43 浏览:227
1200万理财一个月多少收益 发布:2025-06-20 21:31:14 浏览:92