时间序列股票市场
⑴ 股市时间周期理论
股票没有周期性,因为股票系统还是比较完善的系统,博弈系统就是0和1,如果有周期性那么很容易算出来它的周期点,而环球经济系统基本就不是一直的,可以说是市场独立而又相通,比如欧盟,在英国离欧之前走势几乎前三国没多大区别(英,法,德),但是英国离欧之后趋势就不一样了,当然在晚上美国开盘前后可以看出,欧洲收市之前和美洲开盘之后的走势图几乎一样,但是不会完全一样,全球性的区别也可以通过查看20160104至20160131之间的全球K线你会发现,20180129至20180206之间的全球各国K线发现。金融会有蔓延性,重复性,还有特征性。希望回答对你有帮助,如果要专业,希望网络贴吧见,也希望此微博对你有帮助网页链接
⑵ 应用计量经济学时间序列分析在股票预测上有多大的作用
作用没有想象中的大,你可以用股票的滞后变量来进行回归分析,滞后2~3期就够了,不过数据必须具体点,最好细分到每季度、每月的上证指数,还有时间上怎么也要十年左右吧!
我以前在论文附录中做过分析,数据都是自己按季度整理的,挺麻烦的呢,如果需要的话就发给你~
还有就是,我觉得写关于股票的预测方面的实际用处并不是很大,毕竟股票的影响因素太多,单单的凭借以前的走势而预期太不好了。。我自己也炒股票,就像那些macd、kdj之类的指标根本就起不到太大的作用,如果那个能预期的话,股市岂不就成了提款机了?现在你做的这个就像是那些指标一样,要知道,股市是活的,人是活的,而指标确实死的!说这么多的意思就是股市不是能简单预测的,你做的那个用处不大。。
如果你想做的话,建议换个题目,我当时的写的是对弗里德曼的货币需求理论在中国市场的分析。你可以写写货币供应量对通货膨胀的时滞性,分析下在我国市场的滞后期大概是多少~数据在国家统计局和中国人民银行都可以找到的,样本空间一定要足够大,在对滞后变量分析时候主要考虑各自的T检验是否通过,一般从通过之后大概就是那个的滞后期!这个比较直接反而有些许用处~
要是能分析出国家的一般性政策对实体市场的影响就更好了,更有用了~
呵呵,以上只是自己的建议~有什么其他的问题就给我留言吧~
⑶ 什么时候用回归分析,什么时候用时间序列
两者的核心区别在于对数据的假设回归分析假设每个数据点都是独立的,而时间序列则是利用数据之间的相关性进行预测。
本文会先说明两者对数据的具体假设差异,再说明AR模型为什么虽然看上去像回归分析但还是有差别,最后也提到一个常见的混淆两者后在金融方向可能出现的问题。
回归分析对数据的假设:独立性在回归分析中,我们假设数据是相互独立的。这种独立性体现在两个方面:一方面,自变量(X)是固定的,已被观测到的值,另一方面,每个因变量(y)的误差项是独立同分布,对于线性回归模型来说,误差项是独立同分布的正态分布,并且满足均值为0,方差恒定。
这种数据的独立性的具体表现就是:在回归分析中,数据顺序可以任意交换。在建模的时候,你可以随机选取数据循序进行模型训练,也可以随机选取一部分数据进行训练集和验证集的拆分。也正因为如此,在验证集中,每个预测值的误差都是相对恒定的:不会存在误差的积累,导致预测准确度越来越低。
时间序列对数据的假设:相关性但对于时间序列分析而言,我们必须假设而且利用数据的相关性。核心的原因是我们没有其他任何的外部数据,只能利用现有的数据走向来预测未来。因此,我们需要假设每个数据点之间有相关性,并且通过建模找到对应的相关性,利用它去预测未来的数据走向。这也是为什么经典的时间序列分析(ARIMA)会用ACF(自相关系数)和PACF(偏自相关系数)来观察数据之间的相关性。
ACF和PACF分别用两种方式衡量数据点与数据点之间的相关性时间序列对相关性的假设直接违背了回归分析的独立性假设。在多段时间序列预测中,一方面,对于未来预测的自变量可能无法真实的观察到,另一方面,随着预测越来越远,误差会逐渐积累:你对于长远未来的预测应该会比近期预测更不确定。因此,时间序列分析需要采用一种完全不同的视角,用不同的模型去进行分析研究。
AR模型和线性回归模型的“相似”和区别时间序列分析中一个基础模型就是AR(Auto-Regressive)模型。它利用过去的数据点来预测未来。举例而言,AR(1)模型利用当前时刻的数据点预测未来的值,它们的数学关系可以被表示为:
它的表达形式的确和线性回归模型非常类似,甚至连一般的AR(n)模型都和线性回归有很高的相似性。唯一的差别就是等式右边的自变量(X)变成了过去的因变量(y)
而正是因为这一点微小的差异,导致两者的解完全不同。在AR模型中,由于模型自变量成为了过去的因变量,使得自变量与过去的误差之间有相关性。而这种相关性使得
利用线性模型得到的AR模型的解会是有偏估计(biased)。对于上述结论的实际证明需要引入过多的概念。在此我们只对AR(1)模型作为一个特例来分析。不失一般性,我们可以通过平移数据将AR(1)模型表示成如下的形式:
对于这类模型,线性回归会给出以下的估计值:对于一般的线性回归模型而言,由于所有的自变量都会被视为已经观测到的真实值。所以当我们取均值的时候,我们可以把分母当作已知,通过过去观测值和未来误差无关的性质得到无偏的结论。
利用回归模型预测AR模型的数据模拟结果:参数估计会是有偏估计事实上,我们会用线性回归模型去近似求解AR模型。因为虽然结果会是有偏的,但是却是一致估计。也就是说,当数据量足够大的时候,求解的值会收敛于真实值。这里就不再做展开了。
忽视独立性的后果:金融方向的常见错误希望看到这里你已经弄懂了为什么不能混淆模型的假设:尤其是独立性或相关性的假设。接下来我会说一个我见过的
因为混淆假设导致的金融方向的错误随着机器学习的发展,很多人希望能够将机器学习和金融市场结合起来。利用数据建模来对股票价格进行预测。他们会用传统的机器学习方法将得到的数据随机的分配成训练集和测试集。利用训练集训练模型去预测股票涨跌的概率(涨或跌的二维分类问题)。然后当他们去将模型应用到测试集时,他们发现模型的表现非常优秀——能够达到80~90%的准确度。但是在实际应用中却没有这么好的表现。
造成这个错误的原因就是他们没有认识到数据是高度相关的。对于时间序列,我们不能通过随机分配去安排训练集和测试集,否则就会出现“利用未来数据”来预测“过去走向”的问题。这个时候,即使你的模型在你的测试集表现出色,也不代表他真的能预测未来股价的走向。
总结时间序列和回归分析的主要区别在于对数据的假设:回归分析假设每个数据点都是独立的,而时间序列则是利用数据之间的相关性进行预测。虽然线性回归和AR模型看上去有很大的相似性。但由于缺失了独立性,利用线性回归求解的AR模型参数会是有偏的。但又由于这个解是一致的,所以在实际运用中还是利用线性回归来近似AR模型。忽视或假设数据的独立性很可能会造成模型的失效。金融市场的预测的建模尤其需要注意这一点。
⑷ 如何确定股指期货时间序列对股票指数时间序列影响的滞后性
应该要纠正你的观念,股指期货和期权,对应股票指数有的不是滞后性而是前瞻性。你要想股指期货是哪些资金在运作的就应该明白。好吧我直接说吧,在运作股指期货的基本都是大资金以及技术高手。多以基金和游资大鳄为主。他们的消息嗅觉是最灵敏的,往往股票市场一片平静,他们已经闻到了不一样的味道,然后在高杠杆的股指期货市场做出提前反应,从而获取暴利。目前国内的股指期货被限制开仓,参考意义已经没有之前的大了,你要看股指期货对A股指数的波动时间关系,建议你去看新加坡的A50期指,买卖的标的就是上证A股指数。国外和国内的大资金都在那里操作。
⑸ 请股票高手给我解释一下江恩时间序列的奥秘
这是江恩选择过的周期,最可能出现变异点的地方,你在图上照着这个指标用就行了。要究其源的话去找个罗盘来看,中心是一也是一波价格的起始点,依次逆时针螺旋往外数格子,这些数字就是价格大概率变异点,时间周期在罗盘上是固定的24个格子,所以数的时候可以不管它,这些数字多是在时间格子的季节变异点处,你知道一年四季24节气吧?江恩理论理论上很完美,但是市场价格不像地球运动周期那样有规律,不过涨跌力量的逐渐转换和季节的轮换是一样的都有时间上的顺序和价格转变上的过程,江恩理论是唯一的分析价的格理论中同时考虑时间空间的预测方法,懂了江恩理论你会延伸的了解很多很多的东西,江恩很喜欢中国的易经,他的风格也是源于易经,你可以去看看
⑹ 时间序列在股市有哪些应用
时间序列分析在股票市场中的应用
摘要
在现代金融浪潮的推动下,越来越多的人加入到股市,进行投资行为,以期得到丰厚的回报,这极大促进了股票市场的繁荣。而在这种投资行为的背后,越来越多的投资者逐渐意识到股市预测的重要性。
所谓股票预测是指:根据股票现在行情的发展情况地对未来股市发展方向以及涨跌程度的预测行为。这种预测行为只是基于假定的因素为既定的前提条件为基础的。但是在股票市场中,行情的变化与国家的宏观经济发展、法律法规的制定、公司的运营、股民的信心等等都有关联,因此所谓的预测难于准确预计。
时间序列分析是经济预测领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测经济数据。在股票市场上,时间序列预测法常用于对股票价格趋势进行预测,为投资者和股票市场管理管理方提供决策依据。
⑺ 对股票收盘价进行时间序列分析,预测其下一个交易日的收盘价,并与实际收盘价格进行对比
股票投资的分析这么复杂啊,先问问老师有依据这个买股票没,再回答。
⑻ 怎么用excel对股票收盘价进行时间序列分析
最好附上内容
⑼ 非平稳时间序列可以预测股票走势吗
一般把非平稳时间序列转化为平稳时间序列的方法是取n阶差分法。
比如举个例子,假设xt本身是不平稳的时间序列,如果xt~I(1) ,也就是说x的1阶差分是平稳序列。
那么 xt的1阶差分dxt=x(t)-x(t-1) 就是平稳的序列 这时dt=x(t-1)
如果xt~I(2),就是说xt的2阶差分是平稳序列的话
xt的1n阶差分dxt=x(t)-x(t-1) 这时xt的1阶差分依然不平稳,
那么 对xt的1阶差分再次差分后,
xt的2阶差分ddxt=dxt-dxt(t-1)便是平稳序列 这时dt=-x(t-1)-dxt(t-1)
n阶的话可以依次类推一下。